Fractionation of nucleic acids into single-stranded and double-stranded forms

Marcel Beld, Cees Sol, Jaap Goudsmit and René Boom*

Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands

Received March 11, 1996; Revised and Accepted May 15, 1996

We describe a rapid and efficient procedure for the fractionation of mixtures of nucleic acids (NA) into double-stranded (ds) and single-stranded (ss) forms regardless of the nature of the nucleic acid (DNA or RNA). The procedure is based on the differential binding of ds- and ss-NA forms to silica particles in different lysis/binding buffers which have in common that they contain a high concentration of the chaotropic agent guanidinium thiocyanate (GuSCN).

Previously we reported on a procedure (protocol Y) for the routine purification of total NA from clinical specimens (1). The method is based on the lysing and nuclease-inactivating properties of the chaotropic agent GuSCN together with the NA-binding properties of silica particles (or diatoms) in the presence of this agent. Comparison of different GuSCN-containing lysis/binding buffers with respect to the binding of different NA-types to silica particles revealed that only ds-forms were bound when using lysis/binding buffer L11 (see below) whereas both ds- and ss-forms were bound in lysis/binding buffer L6 (1). This observation formed the basis for the development of a procedure (protocol R) for the fractionation of mixtures of ss- and ds-NA. The procedure is summarised in Figure 1. A 50 µl specimen (containing a mixture of NA-types in TE buffer) was added to a mixture of 900 µl lysis/binding buffer L11 and 40 µl size-fractionated silica particles (SC) in an Eppendorf tube and subsequently homogenized by vortexing. After a 10 min binding step at room temperature, the tube was centrifuged (2 min at ∼12 000 g) which resulted in a silica/ds-NA pellet (‘initial silica pellet’) and a supernatant containing ss-NA. To recover ss-NA forms (protocol R-sup) 900 µl of the supernatant were added to a mixture of 400 µl binding buffer L10 (see below) and 40 µl SC. Thereafter the ss-NA was bound during a 10 min binding step at room temperature. The tube was subsequently centrifuged (15 s at ∼12 000 g), and the supernatant discarded (by suction). The resulting pellet was subsequently washed twice with 1 ml of washing buffer L2 (1), twice with 1 ml ethanol 70% (vol/vol) and once with 1 ml acetone. The silica pellet was dried (10 min at 56°C with open lid in an Eppendorf heating block) and eluted (10 min at 56°C; closed lid) in 50 µl TE buffer (10 mM Tris–HCl, 1 mM EDTA, pH 8.0). After centrifugation (2 min at ∼12 000 g) the supernatant contained the ss-NA fraction. To recover ds-NA forms (protocol R-pellet) from the initial silica-pellet, the remaining supernatant was discarded, and the silica pellet was washed twice with 1 ml lysis/binding buffer L11 to remove unbound ss-NA. The resulting silica pellet was subsequently washed twice with washing buffer L2, twice with ethanol 70%, once with acetone, dried and eluted as described for protocol R-sup. After centrifugation (2 min at ∼12 000 g) the supernatant contained the ds-NA fraction.

Lysis/binding buffer L11 was made by dissolving 120 g of GuSCN (Fluka) in 100 ml 0.2 M EDTA (Merck), pH 8.0. Dissolution of the GuSCN was facilitated by heating in a 60°C water bath under continuous shaking. Binding buffer L10 was

* To whom correspondence should be addressed
11 g of solid MgCl₂·6H₂O (Merck) was added and the resulting
heating in a 60°C water bath under continuous shaking.
Subsequently 22 ml 0.2 M EDTA (pH 8.0) and 9.1 g Triton X-100
was added (in duplicate) by protocol R from a mixture of 1 µg
ds-DNA (molecular weight marker VII, Boehringer) and 1 µg ss-DNA (phage
M13 DNA, Boehringer). Half (25 µl) of the eluate was electrophoresed (3)
through a 1.8% agarose gel (containing ethidium bromide) which was
subsequently photographed (Polaroid) under UV-illumination. Lane 1, 100%
recovery marker for ds-DNA fragments (500 ng); lane 2, 100% recovery marker
ss-DNA (500 ng); lane 3, 100% recovery marker mixture ds-DNA/ss-DNA.
Lanes 4 and 5, output protocol R-pellet; lanes 6 and 7, output protocol R-sup.
Molecular weight marker VIII ds-DNA fragments 1114, 500 and 1100 (bp) and
phage M 13 ss-DNA are indicated. (B) Fractionation of ds-DNA and ss-DNA.
NA was purified (in duplicate) by protocol R from a mixture of ds-DNA
(Rotavirus ds-NA, previously purified from faeces of an infected individual)
and 800 ng ss-RNA (phage M22 RNA, Boehringer). Half (25 µl) of the eluate was
electrophoresed through a 1% agarose gel (containing ethidium bromide)
which was subsequently photographed under UV-illumination. Lane 1, 100%
recovery marker for ds-NA segments; lane 2, 100% recovery marker ss-NA
(400 ng); lane 3, 100% recovery marker ds RNA/ss-NA mixture. Lanes 4 and
5, output protocol R-pellet; lanes 6 and 7, output protocol R-sup. The ds-NA
segments (segments 2 and 3, and segments 7, 8 and 9 comigrate) and M52
ss-NA are indicated. Asterisk indicates low molecular weight NA, presumably
breakdown products of DNA and RNA present in the faeces specimen used
for isolation of Rotavirus ds-NA.

prepared by dissolving 120 g GuSCN in 100 ml 0.35 M Tris–HCl
(Boehringer), pH 6.4. Dissolution of GuSCN was facilitated by
heating in a 60°C water bath under continuous shaking.
Subsequently 22 ml 0.2 M EDTA (pH 8.0) and 9.1 g Triton X-100
(Packard) were added and the solution was homogenized. Finally
11 g of solid MgCl₂·6H₂O (Merck) was added and the resulting
solution was homogenized. Buffer L6 and washing buffer L2 (both
containing GuSCN) and size-fractionated silica particles (SC)
were prepared as described (1).

To illustrate the fractionation of ds-DNA and ss-DNA, a mixture
of ds-DNA and ss-DNA was subjected to fractionation (in duplicate)
by protocol R (Fig. 2A). This experiment showed that the
fractionation of a mixture containing ds-DNA and ss-DNA
was complete at the level of detection by UV-illumination.

For fractionation of a mixture of ds-RNA and ss-RNA into
ds- and ss-RNA forms can be efficiently separated into ss- and ds-fractions, regardless of the
nature of the nucleic acid (DNA or RNA), in the described 1 h
procedure (protocol R). It was also seen that DNA/RNA hybrids
behaved like ds-NA (data not shown). The mechanism of
differential binding is not understood. In our experiments
recoveries of ss- and ds-NA exceeded 50%, and the ss-NA fraction
contained <0.1% of ds-DNA present in the starting mixture. NA
purified by protocol R has appeared to be a good substrate in
RT–PCR experiments (data not shown). The procedure may have
wide applications in the separation of ss-NA probes from ds-NA
hybrids or in the separation of in vitro synthesized ss-RNA
transcripts from ds-DNA templates.

ACKNOWLEDGEMENTS

We thank Ans van Strien for the utmost care in the preparation of
buffers and Wim van Est and Eelco Roos for the artwork.

REFERENCES

Laboratory Diagnosis of Infectious Diseases, vol. II. Springer Verlag, New