
 1998 Oxford University Press544–548 Nucleic Acids Research, 1998, Vol. 26, No. 2

Microbial gene identification using interpolated Markov
models
Steven L. S alzberg 1,2,*, Arthur L. Delcher 3, Simon Kasif 4 and Owen White 1

1The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA, 2Department of
Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA, 3Department of Computer Science, Loyola
College in Maryland, Baltimore, MD 21210, USA and 4Department of Electrical Engineering and Computer Science,
University of Illinois at Chicago, Chicago, IL 60607, USA

Received September 10, 1997; Revised and Accepted November 11, 1997

ABSTRACT

This paper describes a new system, GLIMMER, for
finding genes in microbial genomes. In a series of tests
on Haemophilus influenzae , Helicobacter pylori and
other complete microbial genomes, this system has
proven to be very accurate at locating virtually all the
genes in these sequences, outperforming previous
methods. A conservative estimate based on experiments
on H.pylori and H.influenzae is that the system finds
>97% of all genes. GLIMMER uses interpolated Markov
models (IMMs) as a framework for capturing
dependencies between nearby nucleotides in a DNA
sequence. An IMM-based method makes predictions
based on a variable context; i.e., a variable-length
oligomer in a DNA sequence. The context used by
GLIMMER changes depending on the local composition
of the sequence. As a result, GLIMMER is more flexible
and more powerful than fixed-order Markov methods,
which have previously been the primary content-based
technique for finding genes in microbial DNA.

INTRODUCTION

The number of new microbial genomes has dramatically increased
since the first genome, Haemophilus influenzae, was sequenced in
1995 (1). Ten whole genomes have been completed, and at least 30
others are expected to be completed in the next two years. This
abundance of data demands new and highly accurate computational
analysis tools in order to explore these genomes and maximize the
scientific knowledge gained from them. One of the first steps in the
analysis of a microbial genome is the identification of all its genes.
Because these genomes tend to be gene-rich, typically containing
90% coding sequence, the gene discovery problem takes on a
different character than it does in eukaryotic genomes, especially
higher eukaryotes whose genomes may have <10% coding
sequence. In particular, the most difficult problem is determining
which of two or more overlapping open reading frames (orfs)
represent true genes. Other difficult problems include identifying the
start of translation and finding regulatory signals such as promoters
and terminators.

The most reliable way to identify a gene in a new genome is to
find a close homolog from another organism. This can be done today
very effectively using programs such as BLAST (3) and FASTA (4)
to search all the entries in GenBank. However, many of the genes

in new genomes still have no significant homology to known genes
(1). For these genes, we must rely on computational methods of
scoring the coding region to identify the genes. The best-known
program for this task is GeneMark (5), which uses a Markov chain
model to score coding regions. GeneMark has been highly effective
and was used in the H.influenza and more recent genome projects.
We have developed a new system, GLIMMER, that uses a technique
called interpolated Markov models (IMMs) to find coding regions
in microbial sequences. IMMs are in principle more powerful than
Markov chains, and the computational experiments described below
demonstrate that they produce more accurate results when used to
find genes in bacterial DNA.

Markov models are a well-known tool for analyzing biological
sequence data, and the predominant model for microbial sequence
analysis is a fixed-order Markov chain (5,6). A fixed order Markov
model predicts each base of a DNA sequence using a fixed number
of preceding bases in the sequence. For example, a 5th-order model,
which is the basis of GeneMark, uses the five previous bases to
predict the next base. However, learning such models accurately can
be difficult when there is insufficient training data to accurately
estimate the probability of each base occurring after every possible
combination of five preceding bases. In general, a kth-order Markov
model for DNA sequences requires 4k + 1 probabilities to be
estimated from the training data (e.g., 4096 probabilities for a
5th-order model). In order to estimate these probabilities, many
occurrences of all possible kmers must be present in the data.

An IMM overcomes this problem by combining probabilities
from contexts of varying lengths to make predictions, and by only
using those contexts (oligomers) for which sufficient data are
available. In a typical microbial genome some 5mers will occur too
infrequently to give reliable estimates of the probability of the next
base, while some 8mers may occur frequently enough to give very
reliable estimates. In principle, using longer oligomers is always
preferable to using shorter ones, but only if sufficient data is
available to produce good probability estimates. An IMM uses a
linear combination of probabilities obtained from several lengths of
oligomers to make predictions, giving high weights to oligomers that
occur frequently and low weights to those that do not. Thus an IMM
uses a longer context to make a prediction whenever possible, taking
advantage of the greater accuracy produced by higher-order Markov
models. Where the statistics on longer oligomers are insufficient to
produce good estimates, an IMM can fall back on shorter oligomers
to make its predictions.

Using IMMs we have developed a new system, called
GLIMMER, to identify coding regions in microbial DNA.

*To whom correspondence should be addressed. Tel: +1 301 315 2537; Fax: +1 301 838 0208; Email: salzberg@tigr.org, salzberg@cs.jhu.edu

545

Nucleic Acids Research, 1994, Vol. 22, No. 1Nucleic Acids Research, 1998, Vol. 26, No. 2 545

Figure 1. Sample 1-state Markov model for simple sequence modeling.

GLIMMER uses a novel approach, based on frequency of
occurrence and predictive value, to determine the relative weights
of oligomers that vary in length from 1 to 8. After first creating
IMMs for each of the six possible reading frames, GLIMMER
then uses them to score entire orfs. When two high-scoring orfs
overlap, the overlap region is scored separately to determine
which orf is more likely to be a gene. We have tested GLIMMER
using the H.influenzae, Helicobacter pylori and Escherichia coli
genomes and found that it is very accurate in identifying genes,
as we explain in Methods and Results. The system has recently
been used to find the genes in two newly completed genomes:
Borrelia burgdorferi, the bacteria that causes Lyme disease (14), and
Treponema pallidum, the bacteria that causes syphilis (Fraser et al.,
manuscript in preparation). Annotation for these and other
completed genomes will be available on the GLIMMER web site.

INTERPOLATED MARKOV MODELS

Markov chains

Our probabilistic model of DNA sequences represents a sequence as
a process that may be described as a sequence of random variables
X1, X2, ..., where Xi corresponds to position i in the sequence. Each
random variable Xi takes a value from the set of bases (a, c, g, t). The
probability that a variable Xi takes will depend on the local context;
that is, the bases immediately adjacent to the base at position i. We
sometimes refer to (a, c, g, t) as the set of possible states that a
variable can take. In other words, variable Xi is in state a if Xi = a.
As an illustration, consider the simple example of a Markov model
in Figure 1. This 1-state model can be used to model any length
DNA sequence. In each position, the probability of a is 0.2. Thus the
sequence aaaaa would have a probability of (0.2)5 = 0.00032. In this
way we can score any sequence by computing the probability that
it was generated by the model.

A first order Markov chain is a sequence of random variables
where the probability that Xi takes a particular value only depends
on the preceding variable Xi–1. A kth order Markov chain is a
natural generalization of this definition where the probability
distribution of Xi depends only on the k preceding bases. Note that
for DNA sequences a first-order Markov chain is specified
completely by a matrix of 16 probabilities: p(a|a), p(a|c), ..., p(t|t).
There are two essential computational issues that must be
considered in building and using these probabilistic models:
(i) the learning problem, which involves learning a good model
for coding regions in microbial DNA and (ii) the evaluation
problem, which involves assigning a score to a new DNA
sequence that represents the likelihood that the sequence is
coding. GLIMMER’s solutions to both these computational
issues are described in the Interpolated models section below.

To use a Markov chain model to find genes in microbial DNA, we
need to build at least six submodels, one for each of the possible
reading frames (three forward and three reverse). We can also build
a seventh, separate model for non-coding regions, though this is not
strictly necessary. Each model makes different predictions for the

bases in the three codon positions. Even with a 0th-order model, the
frequency of g in codon position 1 will be different from its
frequency in another frame, so even this very weak model has some
ability to identify the right reading frame for a gene.

In a 1st-order model, the output of a state depends on the state
immediately previous; i.e., a base is dependent on the previous
base. Thus instead of four probabilities in each state, we compute
sixteen: p(a|a), p(a|c), ..., p(t|t). In order to score a new sequence,
the model considers two bases at a time, the current base and the
previous one. Likewise, in a 2nd-order model, the output of a state
depends on the two previous bases. So to predict a base in the third
codon position with our 2nd-order model, we look at the first and
second codon positions. To predict a base in the first codon
position, the 2nd-order model looks at the second and third codon
positions in the previous codon.

Using the Markov models for each of the six possible frames plus
a model of non-coding DNA, we can straightforwardly produce a
simple algorithm for finding genes. Simply score every orf using all
seven models, and choose the model with the highest score. The
scores can be normalized so they represent the probability that a
sequence is coding. If the model corresponding to the true coding
region in the correct frame scores the highest, then the orf can be
labeled as a gene. This simple algorithm ignores the difficult
problem of how to handle overlapping genes, which we address in
the Algorithm and System Design section, which contains the details
of GLIMMER. (To be effective, an algorithm must do much more
than this intentionally simple description. For example, all scores
could be nearly equal, or the highest score could still be quite low,
so the algorithm needs to have a threshold score below which no
region is classified as coding.)

Interpolated models

In general, we would always like to use the highest-order Markov
model possible. The higher-order model should always do at least
as well as, and frequently better than, lower-order models. This
can be explained by a simple example.

Suppose that the base in the third codon position depends only on
the second codon position. Then we might observe in a given
genome that P(a3

|g2) = 0.22; i.e., the probability of observing
adenine in the third codon position given that guanine occurs in the
second is 0.22. This is a first-order dependency. Suppose that the
prior probability of adenine P(a3) is 0.30. Clearly we will perform
better by using the first-order statistic, since adenine occurs less
frequently in the third position following guanine than it does
otherwise. Now consider using both the first and second codon
positions to predict a3. Given our assumption that only the second
position matters, we should find that P(a3|g2) = P(a3|g2, x1), where
x1 indicates any base in the first codon position. Thus the 2nd-order
model will perform exactly the same as the 1st-order model. If it
turns out that the third codon position depends on both the first and
second positions, then the 2nd-order model will perform better.

The problem that arises in practice is that, as we move to higher
order models, the number of probabilities that we must estimate
from the data increases exponentially. For DNA sequence data, we
need to learn 4k + 1 probabilities in a kth-order Markov model. Our
six submodels actually need 6×4k + 1 probabilities. So a 5th-order
model needs 24 576 probabilities. In a microbial genome such as
H.influenzae with 1.8 million bases, we will observe each of the
4096 possible 6mers often enough to get accurate estimates for a
5th-order model, although for rare hexamers we may not have

Nucleic Acids Research, 1998, Vol. 26, No. 2546

enough data. For a 6th-order model, which requires probabilities for
all 7mers, there are a substantial number of 7mers that do not occur
sufficiently often, and for 7th and 8th-order models the problem is
worse. However, even for 8th-order models, there are some
oligomers that occur often enough to be extremely useful predictors.
We would like a Markov model that uses these higher-order statistics
whenever sufficient data is available. This is one of the key
advantages of using an IMM. [Note that there exist other techniques
to incorporate variable length predictive models (7,8). We
experimented with these alternatives before converging on the
approach described here.]

To be more precise, an IMM uses a combination of all the
probabilities based on 0, 1, 2, ..., k previous bases, where k is a
parameter given to the algorithm. In GLIMMER, we use k = 8. Thus
for oligomers that occur frequently, the IMM can use an 8th-order
model, while it might use a 5th or even lower-order model for rare
oligomers. In order to ‘smooth’ its predictions, an IMM uses
predictions from the lower-order models, where much more data is
available, to adjust the predictions made from higher-order models.

During training, GLIMMER computes the probability of each
base a, c, g, t, following all kmers for 0 � k � 8. Then, for each
kmer it computes a weight to use in combining the predictions of
different order models. Details of the algorithm for computing
these weights are given in the Algorithm and system design
section. Once the weights are computed, GLIMMER evaluates
new sequences by computing the probability that the model M
generated the sequence S, P (S|M). This probability is computed as

P(S|M)��
n

x�1

IMM 8(Sx)

where Sx is the oligomer ending at position x, and n is the length
of the sequence. IMM8 (Sx), the 8th-order interpolated Markov
model score, is computed as

IMMk(Sx) = λk(Sx – 1) � Pk(Sx) + [1 – λk(Sx – 1)] � IMMk – 1(Sx)

where λk(Sx – 1) is the numeric weight associated with the kmer
ending at position x – 1 in the sequence S and Pk(Sx) is the estimate
obtained from the training data of the probability of the base
located at x in the kth-order model. Thus, the 8th-order IMM score
of an oligomer is a linear combination of the predictions made by
the 8th, 7th and lesser-order models all the way down to the
0th-order model, which is just the simple prior probabilities of a,
c, g, t. The above equation is the solution to the evaluation
problem mentioned in the introduction.

From this definition, it is clear that an IMM is in principle always
preferable to a fixed-order Markov model. For example, by giving
zero weights to all oligomers except 5mers, an IMM will perform
identically to a 5th-order Markov model. However, if there are any
6mers that occur frequently enough in the training data to be useful,
and if these 6mers predict a different distribution of bases than the
corresponding 5mers, then the IMM will outperform the 5th-order
model. Not only longer but also shorter oligomers will help improve
performance: even if a 5th-order model is better than a 4th-order
model, there may be some rare 5mers for which insufficient data are
available. A 5th-order model has no choice but to use the unreliable
predictions from these rare 5mers, but an IMM can fall back on the
much more reliable predictions made by the 4mers in such cases.
The experiments described below indicate that both of these
phenomena occur and both serve to give IMMs an advantage over
fixed-order Markov models.

It is worth remarking that GLIMMER builds a non-homogenous
Markov model; i.e., different models are created for each of the three
codon positions. This type of ‘3-periodic’ Markov chain was
introduced in GeneMark (5) to account for patterns that depend on
the reading frame.

ALGORITHM AND SYSTEM DESIGN

Setting IMM parameters

In this section we describe how GLIMMER computes the values
of the λ parameters for the kth-order IMM described in the
preceding section. In addition, we explain the solution to the
learning problem mentioned in the introduction. First, a set of
known coding sequences must be assembled into a training set.
To be certain these are truly coding is somewhat problematic for
a new genome. The solution we have adopted is to use only very
long orfs and sequences with homology to known genes from
other organisms. These can easily be identified a priori without
knowing anything else about the genome being analyzed.

From the training set of genes, the frequencies of occurrence of
all possible substring patterns of length 1 to k + 1 are tabulated in
each of the six reading frames. (The last base in the substring
defines the reading frame.) For simplicity, let us consider just a
single reading frame and use f(S) to denote the number of
occurrences of string (sequence) S = s1s2 ... sn. (This same
procedure is repeated for each of the six reading frames.) From
these frequencies we get initial estimates of the probability of
base sx occurring given the context string sx–i, sx–i+1, ..., sx–1,
denoted by Sx,i (i.e., the i bases just previous to position x). We
compute the probability of base sx given the i previous bases as

Pi(Sx)� P(sx|Sx,i)�
f (Sx,i)

�b�{acgt} f (Sx,i, b)

The value of λi(Sx) that we associate with Pi(Sx) can be regarded as
a measure of our confidence in the accuracy of this value as an
estimate of the true probability. GLIMMER uses two criteria to
determine λi(Sx). The first of these is simply frequency of
occurrence. If the number of occurrences of context string Sx,i in the
training data exceeds a specific threshold value, then λi(Sx) is set to
1.0. Thus, when there are sufficiently many sample occurrences of
a context string in the training data, then those sample probabilities
are used. The current default value for this threshold in GLIMMER
is 400, which gives ∼95% confidence that the sample probabilities
are within ±0.05 of the true probabilities from which the sample was
taken. (Other thresholds were tested experimentally, but none
provided any noticeable improvement.)

When there are insufficiently many sample occurrences of a
context string to estimate the probability of the next base with
confidence, we employ an additional criterion to assign a λ value.
For a given context string Sx,i of length i, we compare the observed
frequencies of the following base, f(Sx,i, a), f(Sx,i, c), f(Sx,i, g) and
f(Sx,i, t), with the previously calculated IMM probabilities using the
next shorter context, IMMi–1 (Sx,i–1, a), IMMi–1 (Sx,i–1, c), IMMi–1
(Sx,i–1, g) and IMMi–1 (Sx,i–1, t). Using a X2 test, we determine how
likely it is that the four observed frequencies are consistent with the
IMM values from the next shorter context. When the frequencies
differ significantly from the IMM values, we prefer to use them as
better predictors of the next base, i.e., give them a higher λ value.
Conversely, when the frequencies are consistent with the IMM
values, they offer little predictive value and hence we give them a

547

Nucleic Acids Research, 1994, Vol. 22, No. 1Nucleic Acids Research, 1998, Vol. 26, No. 2 547

lower λ value. Specifically, we calculate the χ2 confidence c that the
frequencies are not consistent with the IMM probabilities and set

�i(Sx�1) � �
0.0

c
400
�b�{acgt} f (s1s2���sib)

if c� 0.50
if c� 0.50

Thus, we assign higher λ values based on a combination of
predictive value, determined by χ2 significance, and accuracy,
determined by frequency of occurrence. This λ value now defines
the probabilities IMMi (Sx,i, b) for b ∈ {a, c, g, t} according to
equation 1. [Other methods of assigning λ values for IMMs have
been developed (9,10). We experimented with these methods in
addition to the one described above, and comparative results will
be given in a follow up paper. Roberts (11), cited in (12) also
describes a method for building nonuniform Markov models.]

The GLIMMER system

The GLIMMER system consists of two programs. The first of these,
called build-imm, takes an input set of sequences and builds and
outputs the IMM for them as described above. These sequences can
be complete genes or just partial orfs. The second program, called
glimmer, then uses this IMM to identify putative genes in an entire
genome. Glimmer does not use sliding windows to score regions.
Instead, it first identifies all orfs longer than some specified threshold
value, and scores each one in all six reading frames. Those that score
higher than a designated threshold in the correct reading frame are
then selected for further processing. These selected orfs are then
examined for overlaps. If two orfs in different reading frames
overlap (by more than some designated minimum length), the
overlapping region alone is scored separately. The overlap region’s
six reading frame scores are then compared with those of the two
overlapping orfs to see which frame scores highest. In general, when
a longer orf overlaps a shorter orf and the overlap region scores
highest in the reading frame of the longer orf, then the shorter orf is
eliminated as a gene candidate. The final output of the program is
a list of putative gene coordinates in the genome, together with
notations for each one that may have had a suspicious overlap with
another gene candidate. These ‘suspect’ gene candidates (usually a
very small percentage of the total) can then be examined manually
to determine if they are in fact genes. Samples of GLIMMER
outputs for the H.pylori genome are available on the GLIMMER
web site at http://www.cs.jhu.edu/labs/compbio/glimmer.html,
which also contains results for E.coli and H.influenzae. The
GLIMMER system, including all source code, is freely available
from this site.

METHODS AND RESULTS

To evaluate the effectiveness of our IMM, we compared it to a
conventional fixed-order model on data from H.influenzae
genome. As a second confirming test, we ran it on the recently
sequenced H.pylori genome and did a careful comparison of the
genes found by GLIMMER to those annotated in the public
databases and to the genes found by the GeneMark system.

Comparison on H.influenzae

Haemophilus influenzae has many putative genes whose existence
has not been confirmed biologically. For this experiment, we wanted
to train GLIMMER using only genes that had a very high likelihood
of being real; therefore, we chose for training a set of orfs that satisfy

both of these criteria: (i) the orf is >500 bases long, which provides
the basis for a statistical argument that the gene is highly likely to be
a coding region, since orfs of this length almost never occur in
non-coding DNA. (ii) The orf does not overlap any other orf longer
than 500 bp. Using these criteria, we were able to collect 1168 orfs
from the current version of H.influenzae (GenBank accession
L42023), which contains 1717 annotated genes. Thirty-two of these
did not match CDS entries, but we included them anyway. This
gives us a completely automatic training procedure for GLIMMER,
requiring no human intervention.

This experiment compared GLIMMER’s IMM to a conventional
fixed-length Markov model on the H.influenzae genome data. We
followed identical training protocols for both the IMM and a
fixed-length 5th-order Markov model. [This 5th-order Markov
model is the same model as that used by GeneMark (6). Because we
did not have access to the GeneMark source code, we could not
retrain that system on our data, so we implemented our own model
based on published descriptions of GeneMark.] All post-processing
to resolve overlaps was also identical for both methods. Thus the
only difference was the model itself: in one case an interpolated
Markov model, and in the other case a 5th-order Markov model.
Note that we also implemented 4th and 6th-order Markov models,
but the 5th-order model performed better than these. The results are
shown in Table 1.

Table 1. Comparison of the IMM model used in GLIMMER to a 5th-order
Markov model

Model Genes
found

Genes
missed

Additional
genes

GLIMMER IMM 1680 (97.8% 37 209
5th-Order Markov 1574 (91.7%) 143 104

The first column indicates how many of the 1717 annotated genes in H.influenzae
were found by each algorithm. The ‘additional genes’ column shows how many extra
genes, not included in the 1717 annotated entries, were called genes by each method.

Of the 37 genes missed by GLIMMER’s IMM, only one was
found by the 5th-order model. In contrast, the IMM found 107 genes
that the 5th order model missed. For this run, a pre-set threshold
prevented both systems from finding genes shorter than 100 bp, and
six of the 37 genes missed by GLIMMER were below this threshold.
Of the remaining 31 genes, only one was longer than 500 bp. Finally,
note that this was a completely ‘self-trained’ experiment in which
database matches were not used for training; augmenting the training
set with these additional genes will almost certainly improve
performance further. Of the 209 additional genes called by the
system, some can be eliminated from consideration by comparison
with functional RNA sequences. The remainder may or may not be
expressed genes, and further biological evidence is required to
resolve these genes.

Gene finding accuracy on H.pylori

Finally, in a test designed to run the system as it will be used on new,
complete genomes, we ran GLIMMER on the complete, recently
sequenced genome of H.pylori (13), the bacterium that causes
stomach ulcers. A training set of brute force orfs that were >500 nt
were collected from the complete genome of H.pylori. (This training
set was collected from the genome without reference to any
annotation, exactly as it would be for a brand new sequence.) The
resulting IMM model was then compared to the annotated set of
genes identified for this organism. The 1590 genes annotated for
Helicobacter were identified by integrating the following sets of

Nucleic Acids Research, 1998, Vol. 26, No. 2548

information: (i) evaluating brute force orfs for protein-level
sequence similarity matches to the public archives, (ii) predicting
coding regions using the GeneMark system and (iii) collecting
‘intergenic’ orfs that were found between the genes with database
matches and the genes called by GeneMark. We consider the
H.pylori sequence annotation to have been intensively evaluated by
the research community, and as yet, no unidentified genes have been
reported since the H.pylori publication.

The annotated genes were compared to the results of the
GLIMMER algorithm, and 1548 of the 1590 genes were found to
have been correctly identified. An additional 314 potential orfs were
found by the system in the H.pylori genome. Some of these
additional genes can be eliminated by discarding those that conflict
with ribosomal and transfer RNAs, but the remainder cannot be
ruled out as authentic genes without further biological evidence. The
set of 42 unidentified genes, representing a potential false negative
rate of 2.6%, were examined further. Nineteen of these genes from
the H.pylori annotation were under 100 nt in length, and possibly
below the length for meaningful detection by compositional
methods. Orfs that have matches to proteins in the current public
archives serve as the most reliable and independent verification that
an orf is an authentic gene; of these orfs, only seven were present in
the 42 genes that GLIMMER did not identify. This suggests a
minimal false negative rate of 0.44% for GLIMMER.

Note that for this experiment, GLIMMER used a minimum gene
length of 90 bp; this length can be changed with a simple command
line parameter. With a minimum gene length of 180 bp (60 amino
acids), for example, GLIMMER calls 286 fewer genes in H.pylori.

Finally, we conducted a limited comparison to the GeneMark
system (6). To keep the comparison simple, we only considered the
974 genes from H.pylori that had database matches to other
organisms; these can safely be considered to be ‘true’ genes.
GLIMMER, was trained exclusively on orfs longer than 500 bp,
with overlapping orfs simply discarded. Thus GLIMMER was
completely self-trained for this test, with no human intervention.
(This fully automatic training requires only a few minutes of
computation time.) For the first comparison, we used the output of
GeneMark as generated by the H.pylori project (13); the GeneMark
version used in that study was from early 1997.

From the set of 974 genes, GLIMMER found 21 genes that
GeneMark missed, while GeneMark found one gene that
GLIMMER missed. Overall GLIMMER missed eight genes while
GeneMark missed 28. The two systems agreed on 945 of the
974 genes. We then ran a second comparison, this time using
GeneMarkHMM, the newest release of GeneMark. (For this
experiment, GeneMarkHMM was trained using all orfs longer than
700 bp, and the genes were divided during training into ‘typical’ and
‘atypical’ classes.) GeneMarkHMM missed 23 of the genes from the
list of database hits. GLIMMER found 15 of the genes that
GeneMarkHMM missed, while GeneMarkHMM did not find any
genes that GLIMMER missed. The two systems agreed on 951/974
(97.6%) of the genes.

Note that the experiments described here all used a fully automatic
training protocol, in which long orfs were identified by a program
and then fed directly into GLIMMER. The system will perform even
better if additional genes are included in the training set, and we
expect that genome projects will include database matches to other
organisms as part of training. Another simple method for improving
performance is also available: the first set of genes identified by the
system can be used as a new (larger) training set, and the system can

be re-run repeatedly until it converges. This iterative algorithm will
also be available as an option in the GLIMMER system.

CONCLUSION

Evaluating the accuracy of a microbial gene finder is difficult,
because the genes annotated in GenBank do not always have
biological evidence to back up their existence. As the annotation
becomes more stable, more accurate estimates of accuracy will be
possible. At the same time, better gene finders should result because
the available training data will improve. Although GLIMMER’S
sensitivity is nearing 100% already, there are several important areas
of future improvements. One is to improve its specificity by
reducing the number of false positives (after first confirming that the
unannotated genes found by the system are in fact false). Specificity
can already be reduced substantially, at the cost of slightly reducing
sensitivity, by increasing the minimum length orf that GLIMMER
will consider as a gene. Another is to incorporate separate pattern
analysis algorithms that will allow the system to find promoters,
enhancers, terminators and other signals that occur in intergenic
regions. Accurate location of these signals is an important problem
in its own right, and a system that integrates the content scoring
approach of GLIMMER with a good signal identification algorithm
should produce better results than either approach could
independently.

ACKNOWLEDGEMENTS

Thanks to Mark Borodovsky and Alexander Lukashin for kindly
sharing the results of GeneMarkHMM on the H.pylori genome.
S.L.S. is supported by the National Human Genome Research
Institute at NIH under Grant No. K01-HG00022-1. S.L.S. and
A.L.D. are supported by the National Science foundation under
Grant No. IRI-9530462. S.K. is supported by NSF IRI-9529227.
O.W. is supported by the Department of Energy Grant No.
DE-FC02-95ER61962.A003.

REFERENCES

1 Fleischmann,R.D., Adams,M., White,O., Clayton,R., Kirkness,R.,
Kerlavage,A., Bult,C., Tomb,J.-F., Dougherty,B. Merrick ,J., et al., (1995)
Science, 269, 496–512.

2 Strauss,E.J. and Falkow,S. (1997) Science, 276, 707–712.
3 Altschul,S., Gish,W., Miller,W., Myers,E. and Lipman,D. (1990) J. Mol. Biol.,

215, 403–410.
4 Pearson,W.R. (1995) Protein Sci., 4, 1145–1160.
5 Borodovsky,M. and Mcininch ,.D. (1993) Comp. Chem., 17, 123–133.
6 Borodovsky,M., McIninch,J., Koonin,E., Rudd,K., Medigue,C. and

Danchin (1995) Nucleic Acids Res., 23, 3554–3562.
7 Ron,D., Singer,Y. and Tishby,N. (1996) Machine learning 25, 117–149.
8 Rissanen,J. (1983) IEEE Transactions on information theory 29, 656–664.
9 Ristad,E. and Thomas,R. (1997) Nonuniform Markov models In International

Conference on Acoustics, Speech and Signal Processing, Munich, Germany.
10 Jelinek,F. and Mercer,R.L. (1980) In Gelsema,E.S. and Kanal,L.N. (Eds.),

Pattern Recognition in Practice. Elsevier, North Holland, NY, USA. pp.
381–397.

11 Roberts,M.G. (1982) Local Order Estimating Markovian Analysis for
Noiseless Source Coding and Authorship Identification Ph.D. thesis,
Stanford University, Stanford, CA.

12 Williams,R.N. (1991) Adaptive Data Compression, Kluwer Academic
Publishers Boston, MA.

13 Tomb,J.-F,. White,O., Kerlavage,A.R., Clayton,R., Sutton,G., Fleischmann,R.,
Ketchum,K., Klenk,H., Gill,S., Dougherty,B., et al., (1997) Nature, 388,
539–547.

14 Fraser,C.M., Casjen,S., Huang,W., Sutton,G., Clayton, R., Lathigra,R.,
White,O., Ketchum,K., Dodson,R., Hickey,E. et al. (1997) Nature, 390,
680–686.

