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ABSTRACT

How do genetic systems gain information by evolu-
tionary processes? Answering this question precisely
requires a robust, quantitative measure of information.
Fortunately, 50 years ago Claude Shannon defined
information as a decrease in the uncertainty of a
receiver. For molecular systems, uncertainty is
closely related to entropy and hence has clear
connections to the Second Law of Thermodynamics.
These aspects of information theory have allowed
the development of a straightforward and practical
method of measuring information in genetic control
systems. Here this method is used to observe infor-
mation gain in the binding sites for an artificial
‘protein’ in a computer simulation of evolution. The
simulation begins with zero information and, as in
naturally occurring genetic systems, the information
measured in the fully evolved binding sites is close
to that needed to locate the sites in the genome. The
transition is rapid, demonstrating that information
gain can occur by punctuated equilibrium.

INTRODUCTION

Evolutionary change has been observed in the fossil record, in
the field, in the laboratory, and at the molecular level in DNA
and protein sequences, but a general method for quantifying
the changes has not been agreed upon. In this paper the well-
established mathematics of information theory (1–3) is used to
measure the information content of nucleotide binding sites
(4–11) and to follow changes in this measure to gauge the
degree of evolution of the binding sites.

For example, human splice acceptor sites contain ~9.4 bits of
information on average (6). This number is called Rsequence
because it represents a rate (bits per site) computed from the
aligned sequences (4). (The equation for Rsequence is given in the
Results.) The question arises as to why one gets 9.4 bits rather
than, say, 52. Is 9.4 a fundamental number? The way to answer
this is to compare it to something else. Fortunately, one can use
the size of the genome and the number of sites to compute how
much information is needed to find the sites. The average
distance between acceptor sites is the average size of introns
plus exons, or ~812 bases, so the information needed to find the
acceptors is Rfrequency = log2 812 = 9.7 bits (6). By comparison,
Rsequence = 9.4 bits, so in this and other genetic systems Rsequence
is close to Rfrequency (4).

These measurements show that there is a subtle connection
between the pattern at binding sites and the size of the genome
and number of sites. Relative to the potential for changes at
binding sites, the size of the entire genome is approximately
fixed over long periods of time. Even if the genome were to
double in length (while keeping the number of sites constant),
Rfrequency would only change by 1 bit, so the measure is quite
insensitive. Likewise, the number of sites is approximately
fixed by the physiological functions that have to be controlled
by the recognizer. So Rfrequency is essentially fixed during long
periods of evolution. On the other hand, Rsequence can change
rapidly and could have any value, as it depends on the details
of how the recognizer contacts the nucleic acid binding sites
and these numerous small contacts can mutate quickly. So how
does Rsequence come to equal Rfrequency? It must be that Rsequence can
start from zero and evolve up to Rfrequency. That is, the necessary
information should be able to evolve from scratch.

The purpose of this paper is to demonstrate that Rsequence can
indeed evolve to match Rfrequency (12). To simulate the biology,
suppose we have a population of organisms each with a given
length of DNA. This fixes the genome size, as in the biological
situation. Then we need to specify a set of locations that a
recognizer protein has to bind to. That fixes the number of
sites, again as in nature. We need to code the recognizer into
the genome so that it can co-evolve with the binding sites.
Then we need to apply random mutations and selection for
finding the sites and against finding non-sites. Given these
conditions, the simulation will match the biology at every
point.

Because half of the population always survives each selection
round in the evolutionary simulation presented here, the
population cannot die out and there is no lethal level of
incompetence. While this may not be representative of all
biological systems, since extinction and threshold effects do
occur, it is representative of the situation in which a functional
species can survive without a particular genetic control system
but which would do better to gain control ab initio. Indeed, any
new function must have this property until the species comes to
depend on it, at which point it can become essential if the
earlier means of survival is lost by atrophy or no longer available.
I call such a situation a ‘Roman arch’ because once such a
structure has been constructed on top of scaffolding, the
scaffold may be removed, and will disappear from biological
systems when it is no longer needed. Roman arches are
common in biology, and they are a natural consequence of
evolutionary processes.

The fact that the population cannot become extinct could be
dispensed with, for example by assigning a probability of
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death, but it would be inconvenient to lose an entire population
after many generations.

A twos complement weight matrix was used to store the
recognizer in the genome. At first it may seem that this is
insufficient to simulate the complex processes of transcription,
translation, protein folding and DNA sequence recognition
found in cells. However, the success of the simulation, as shown
below, demonstrates that the form of the genetic apparatus does
not affect the computed information measures. For information
theorists and physicists this emergent mesoscopic property
(13) will come as no surprise because information theory is
extremely general and does not depend on the physical
mechanism. It applies equally well to telephone conversations,
telegraph signals, music and molecular biology (2).

Given that, when one runs the model one finds that the
information at the binding sites (Rsequence) does indeed evolve to
be the amount predicted to be needed to find the sites
(Rfrequency). This is the same result as observed in natural
binding sites and it strongly supports the hypothesis that these
numbers should be close (4).

MATERIALS AND METHODS

Sequence logos were created as described previously (5).
Pascal programs ev, evd and lister are available from http://
www.lecb.ncifcrf.gov/~toms/ . The evolution movie is at http://
www.lecb.ncifcrf.gov/~toms/paper/ev/movie

RESULTS

To test the hypothesis that Rsequence can evolve to match Rfrequency,
the evolutionary process was simulated by a simple computer
program, ev, for which I will describe one evolutionary run.
This paper demonstrates that a set of 16 binding sites in a
genome size of 256 bases, which would theoretically be
expected to have an average of Rfrequency = 4 bits of information
per site, can evolve to this value given only these minimal
numerical and size constraints. Although many parameter
variations are possible, they give similar results as long as
extremes are avoided (data not shown).

A small population (n = 64) of ‘organisms’ was created, each
of which consisted of G = 256 bases of nucleotide sequence
chosen randomly, with equal probabilities, from an alphabet of
four characters (a, c, g, t, Fig. 1). At any particular time in the
history of a natural population, the size of a genome, G, and the
number of required genetic control element binding sites, γ, are
determined by previous history and current physiology,
respectively, so as a parameter for this simulation we chose γ = 16
and the program arbitrarily chose the site locations, which are
fixed for the duration of the run. The information required to
locate γ sites in a genome of size G is Rfrequency = –log2 (γ/G) = 4
bits per site, where γ/G is the frequency of sites (4,14).

A section of the genome is set aside by the program to
encode the gene for a sequence recognizing ‘protein’, represented
by a weight matrix (7,15) consisting of a two-dimensional
array of 4 by L = 6 integers. These integers are stored in the
genome in twos complement notation, which allows for both
negative and positive values. (In this notation, the negative of
an integer is formed by taking the complement of all bits and
adding 1.) By encoding A = 00, C = 01, G = 10 and T = 11 in a
space of 5 bases, integers from –512 to +511 are stored in the

genome. Generation of the weight matrix integers from the
nucleotide sequence gene corresponds to translation and
protein folding in natural systems. The weight matrix can evaluate
any L base long sequence. Each base of the sequence selects
the corresponding weight from the matrix and these weights
are summed. If the sum is larger than a tolerance, also encoded in
the genome, the sequence is ‘recognized’ and this corresponds to
a protein binding to DNA (Fig. 1). As mentioned above, the
exact form of the recognition mechanism is immaterial
because of the generality of information theory.

The weight matrix gene for an organism is translated and
then every position of that organism’s genome is evaluated by
the matrix. The organism can make two kinds of ‘mistakes’.
The first is for one of the γ binding locations to be missed
(representing absence of genetic control) and the second is for
one of the G – γ non-binding sites to be incorrectly recognized
(representing wasteful binding of the recognizer). For
simplicity these mistakes are counted as equivalent, since other
schemes should give similar final results. The validity of this
black/white model of binding sites comes from Shannon’s
channel capacity theorem, which allows for recognition with as
few errors as necessary for survival (1,7,16).

The organisms are subjected to rounds of selection and
mutation. First, the number of mistakes made by each
organism in the population is determined. Then the half of the
population making the least mistakes is allowed to replicate by
having their genomes replace (‘kill’) the ones making more
mistakes. (To preserve diversity, no replacement takes place if
they are equal.) At every generation, each organism is
subjected to one random point mutation in which the original
base is obtained one-quarter of the time. For comparison, HIV-
1 reverse transcriptase makes about one error every 2000–5000
bases incorporated, only 10-fold lower than this simulation
(17).

When the program starts, the genomes all contain random
sequence, and the information content of the binding sites,
Rsequence, is close to zero. Remarkably, the cyclic mutation and
selection process leads to an organism that makes no mistakes
in only 704 generations (Fig. 2a). Although the sites can
contain a maximum of 2L = 12 bits, the information content of
the binding sites rises during this time until it oscillates around
the predicted information content, Rfrequency = 4 bits, with
Rsequence = 3.983 ± 0.399 bits during the 1000 to 2000 generation
interval (Fig. 2b). The expected standard deviation from small
sample effects (4) is 0.297 bits, so ~55% of the variance (0.32/0.42)
comes from the digital nature of the sequences. Sequence logos
(5) of the binding sites show that distinct patterns appear during
selection, and that these then drift (Fig. 3). When selective
pressure is removed, the observed pattern atrophies (not
shown, but Fig. 1 shows the organism with the fewest mistakes
at generation 2000, after atrophy) and the information content
drops back to zero (Fig. 2b). The information decays with a
half-life of 61 generations.

The evolutionary steps can be understood by considering an
intermediate situation, for example when all organisms are
making 8 mistakes. Random mutations in a genome that lead to
more mistakes will immediately cause the selective elimination
of that organism. On the other hand, if one organism randomly
‘discovers’ how to make 7 mistakes, it is guaranteed (in this
simplistic model) to reproduce every generation, and therefore
it exponentially overtakes the population. This roughly-sigmoidal
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rapid transition corresponds to (and the program was inspired
by) the proposal that evolution proceeds by punctuated
equilibrium (18,19), with noisy ‘active stasis’ clearly visible
from generation 705 to 2000 (Figs 2b and 3).

An advantage of the ev model over previous evolutionary
models, such as biomorphs (20), Avida (21) and Tierra (22), is
that it starts with a completely random genome, and no further
intervention is required. Given that gene duplication is
common and that transcription and translation are part of the
housekeeping functions of all cells, the program simulates the
process of evolution of new binding sites from scratch. The
exact mechanisms of translation and locating binding sites are
irrelevant.

The information increases can be understood by looking at
the equations used to compute the information (12). The
information in the binding sites is measured as the decrease in
uncertainty from before binding to after binding (4,14):

Rsequence = Hbefore – Hafter (bits per site) 1

Before binding the uncertainty is

Hbefore = HgL 2

where L is the site width,

e (G) is a small sample correction (4) and p(b) is the frequency
of base b in the genome of size G. After binding the uncertainty
is:

where f(b,l) is the frequency of base b at position l in the
binding sites and e(n(l)) is a small sample size correction (4)
for the n(l) sequences at l. In both this model and in natural
binding sites, random mutations tend to increase Hbefore and
Hafter since equiprobable distributions maximize the uncertainty
and entropy (1). Because there are only four symbols (or
states), nucleotides can form a closed system and this tendency
to increase appears to be a form of the Second Law of

Figure 1. Genetic sequence of a computer organism. The organism has two parts, a weight matrix gene and a binding site region. The gene for the weight matrix
covers bases 1 to 125. It consists of six segments 20 bases wide and one tolerance value 5 bases wide. Each segment contains a sequence specifying the weights for
the four nucleotides. For example, bases 1 to 5 contain tcttt. Translating this to binary gives 1101111111, which is the twos complement number for –129. This is
the weight for A in the first position of the matrix. The 16 non-overlapping binding site locations were placed at random in the remaining portion of the genome.
Evaluation by the weight matrix is indicated for each site. For example site 1, covering positions 132 to 137, catctt, is evaluated as –442 + 296 – 136 + 251 + 294
– 92 = 171. Since this is larger than the threshold (–58), it is ‘recognized’, and is marked with ‘+’ signs. Evaluations to determine mistakes are for the first 256
positions on the genome. An extra 5 bases are added to the end, but not searched, to allow the sequence logos in Figure 3 to have complete sequences available at
all positions. Mutations are applied to all positions in the genome, so the binding sites and the weight matrix co-evolve. The figure was generated with programs
ev, evd and lister.
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Thermodynamics (12,23), where H is proportional to the
entropy for molecular systems (24). Effective closure occurs
because selections have little effect on the overall frequencies
of bases in the genome, so without external influence Hbefore
maximizes at ~2L bits per base (Hg = 1.9995 ± 0.0058 bits for
the entire simulation). In contrast, by biasing the binding site
base frequencies, f(b,l), selection simultaneously provides an
open process whereby Hafter can be decreased, increasing the
information content of the binding sites according to equation 1
(12).

Microevolution can be measured in haldanes, as standard
deviations per generation (25–27). In this simulation 4.0 ± 0.4
bits evolved at each site in 704 generations, or 4.0/(0.4 × 704)
= 0.014 haldanes. This is within the range of natural population
change, indicating that although selection is strong, the model is
reasonable. However, a difficulty with using standard deviations
is that they are not additive for independent measures, whereas
bits are. A measure suggested by Haldane is the darwin, the

natural logarithm of change per million years, which has units
of nits per time. This is the rate of information transmission
originally introduced by Shannon (1). Because a computer
simulation does not correlate with time, the haldane and
darwin can be combined to give units of bits per generation; in
this case 0.006 ± 0.001 bits per generation per site.

DISCUSSION

The results, which show the successful simulation of binding
site evolution, can be used to address both scientific and
pedagogical issues. Rsequence approaches and remains around
Rfrequency (Fig. 2b), supporting the hypothesis that the information
content at binding sites will evolve to be close to the information
needed to locate those binding sites in the genome, as observed
in natural systems (4,6). That is, one can measure information
in genetic systems, the amount observed can be predicted, and
the amount measured evolves to the amount predicted. This is
useful because when this prediction is not met (4,6,28,29) the
anomaly implies the existence of new biological phenomena.
Simulations to model such anomalies have not been attempted
yet.

Variations of the program could be used to investigate how
population size, genome length, number of sites, size of recog-
nition regions, mutation rate, selective pressure, overlapping
sites and other factors affect the evolution. Another use of the
program may include understanding the sources and effects of
skewed genomic composition (4,7,30,31). However, this could
be caused by mutation rates, and/or it could be the result of
some kind(s) of evolutionary pressure that we don’t under-
stand, so how one implements the skew may well affect or bias
the results.

The ev model quantitatively addresses the question of how
life gains information, a valid issue recently raised by creationists
(32) (R. Truman, http://www.trueorigin.org/dawkinfo.htm ; 08-
Jun-1999) but only qualitatively addressed by biologists (33). The
mathematical form of uncertainty and entropy (H = –Σplog2p,
Σp = 1) implies that neither can be negative (H ≥ 0), but a
decrease in uncertainty or entropy can correspond to
information gain, as measured here by Rsequence and Rfrequency.
The ev model shows explicitly how this information gain
comes about from mutation and selection, without any other
external influence, thereby completely answering the creationists.

The ev model can also be used to succinctly address two
other creationist arguments. First, the recognizer gene and its
binding sites co-evolve, so they become dependent on each
other and destructive mutations in either immediately lead to
elimination of the organism. This situation fits Behe’s (34)
definition of ‘irreducible complexity’ exactly (“a single system
composed of several well-matched, interacting parts that
contribute to the basic function, wherein the removal of any one of
the parts causes the system to effectively cease functioning”, page
39), yet the molecular evolution of this ‘Roman arch’ is
straightforward and rapid, in direct contradiction to his thesis.
Second, the probability of finding 16 sites averaging 4 bits
each in random sequences is 2–4 × 16 ≅ 5 × 10–20 yet the sites
evolved from random sequences in only ~103 generations, at an
average rate of ~1 bit per 11 generations. Because the mutation
rate of HIV is only 10 times slower, it could evolve a 4 bit site
in 100 generations, ~9 months (35), but it could be much faster
because the enormous titer [1010 new virions/day/person (17)]

Figure 2. Information gain by natural selection. (a) Number of mistakes made
by the organism with the fewest mistakes plotted against the generation
number. At 1000 generations, selection was removed. Because of the initial
random number arbitrarily chosen for this particular simulation (0.3), the
initial best organism only made mistakes in missing the 16 sites, but this is
generally not the case. (Displaying the best organism, which is most likely to
survive, is a form of selection that does not affect the simulation.) (b) The
information content at binding sites (Rsequence) of the organism making the
fewest mistakes is plotted against generation number. Selection for organisms
making the fewest mistakes was applied from generation 0 to 2000 (top curve,
green). The simulation was then reset to the state at 1000 generations and rerun
without selection (bottom curve, red). The dashed line shows the information
predicted, Rfrequency = 4 bits, given the size of the genome and the number of
binding sites.
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provides a larger pool for successful changes. Likewise, at this
rate, roughly an entire human genome of ~4 × 109 bits

(assuming an average of 1 bit/base, which is clearly an over-
estimate) could evolve in a billion years, even without the

Figure 3. Sequence logos showing evolution of binding sites. A sequence logo shows the information content at a set of binding sites by a set of stacks of letters
(5). The height of each stack is given in bits, and the sum of the heights is the total information content, Rsequence. Within each stack the relative heights of each letter
are proportional to the frequency of that base at that position, f(b,l). Error bars indicate likely variation caused by the small sample size (4), as seen outside the sites,
which cover positions 0 to 5. The complete movie is available at http://www.lecb.ncifcrf.gov/~toms/paper/ev/movie
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advantages of large environmentally diverse world-wide
populations, sexual recombination and interspecies genetic
transfer. However, since this rate is unlikely to be maintained
for eukaryotes, these factors are undoubtedly important in
accounting for human evolution. So, contrary to probabilistic
arguments by Spetner (32,36), the ev program also clearly
demonstrates that biological information, measured in the
strict Shannon sense, can rapidly appear in genetic control
systems subjected to replication, mutation and selection (33).
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