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ABSTRACT

We compare the diversity of chromosomal-encoded
transfer RNA (tRNA) genes from 11 eukaryotes as
identified by tRNAScan-SE of their respective
genomes. They include the budding and fission
yeast, worm, fruit fly, fugu, chicken, dog, rat, mouse,
chimp and human. The number of tRNA genes are
between 170 and 570 and the number of tRNA
isoacceptors range from 41 to 55. Unexpectedly, the
number of tRNA genes having the same anticodon
but different sequences elsewhere in the tRNA body
(defined here as tRNA isodecoder genes) varies
significantly (10–246). tRNA isodecoder genes allow
up to 274 different tRNA species to be produced
from 446 genes in humans, but only up to 51 from
275 genes in the budding yeast. The fraction of
tRNA isodecoder genes among all tRNA genes
increases across the phylogenetic spectrum. A
large number of sequence differences in human
tRNA isodecoder genes occurs in the internal
promoter regions for RNA polymerase III. We also
describe a systematic, ligation-based method to
detect and quantify tRNA isodecoder molecules in
human samples, and show differential expression
of three tRNA isodecoders in six human tissues.
The large number of tRNA isodecoder genes in
eukaryotes suggests that tRNA function may be
more diverse than previously appreciated.

INTRODUCTION

Transfer RNA (tRNA) consists of 75–95 nt and is ubiquitous
in all organisms. All tRNAs are characterized by a secondary
structure made up of three hairpin loops and a terminal
helical stem (cloverleaf) which fold into an L-shaped tertiary
structure. The main functional regions in tRNA are the
anticodon triplets which read the messenger RNA (mRNA)
codons and the 30 CCA nucleotides where an amino acid
cognate to the tRNA is attached. Codon degeneracy for the
20 amino acids requires up to 5 tRNAs with distinct

anticodons (tRNA isoacceptors) to read codons for each
amino acid. There are 21 isoacceptor families, one for each
amino acid and one for seleno-cysteine. An isoacceptor
family may consist of one tRNA member, e.g. tRNATrp, to
five tRNA members, e.g. tRNALeu (1).

tRNA isoacceptors have been the main targets for biologi-
cal, biochemical and computational studies of tRNA function.
In bacteria and yeast, the abundance of tRNA isoacceptors
correlates with the codon usage of highly abundant proteins
(2–8). The abundance of tRNA isoacceptors in bacteria and
yeast can be approximated by the number of tRNA genes
in the genomes. Annotation of tRNA genes in sequenced
genomes by tRNAScan-SE shows that the number of tRNA
isoacceptors ranges from high 20s to low 50s (9,10).

Even before genome sequencing, it was already known by
direct RNA sequencing that in Escherichia coli K12, the
number of different tRNA species is greater than the total
number of isoacceptors (11). tRNAThr1 and tRNAThr3 have
the same anticodon GGU, but they differ at four residues
in the TYC stem and at nucleotide #9. tRNAVal2A and
tRNAVal2B have the same anticodon GAC, but they differ
at four residues in the acceptor stem and two residues in
the TYC stem. tRNATyrI and tRNATyrII have the same
anticodon GUA, but they differ at two residues in the long
variable stem–loop. All together, the total number of tRNA
species in E.coli K12 on the basis of RNA sequencing was
44 among 41 tRNA isoacceptors. The genome sequence of
E.coli K12 (MG1655 strain) shows three additional tRNA
genes containing sequence differences in the same isoaccep-
tor: one tRNALeu(CAG) gene, which differs at one residue
in the long variable stem from three other tRNALeu(CAG)
genes; one tRNAfmet gene, which differs at one residue in
the short variable loop from three other tRNAfmet genes;
and tRNAIle(CAU), which differs at two residues in the
acceptor stem (12). In all these cases, the sequence changes
perfectly maintain base pairing and the conserved structural
features of tRNA. All together in E.coli MG1655, the possi-
ble number of tRNA species that have the same anticodon
but different sequences in the tRNA body is 6 among 86
annotated tRNA genes (6/86 ¼ 7% of tRNA genes).

A well-studied example in tissue-specific expression of
distinct tRNAs having the same anticodon is derived from
the silkworm, Bombyx mori (13–15). Two tRNAAla(AGC)
products have been identified, one present in all tissue
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types and the other only in the silk gland. These two tRNAs
differ by a single nucleotide at position 40 which changes the
G30–C40 base pair in the anticodon stem of the constitutive
tRNAAla to G30–U40 wobble for the silk gland specific
tRNAAla.

Previous tRNA sequencing work shows that at least two
distinct tRNAs with the same anticodon is expressed in
humans (16). The third nucleotide in tRNAGln(UUG) was
found to be either a C or a U.

This work describes a surprisingly large diversity of tRNA
genes among 11 species of eukaryotes from budding yeast
to human. Their genomes contain 170–570 tRNA genes and
41–55 tRNA isoacceptors. However, the number of tRNA
genes having the same anticodon but different sequences in
the tRNA body is as low as 3.6% (10/275) and as high as
55% (246/451). Furthermore, the number and percentage of
such tRNA genes follow the phylogenetic arrangement of
these 11 organisms.

Our previous experience with tRNA microarrays (17,18)
suggests that the sensitivity and reproducibility in the detec-
tion and quantification of tRNA can be significantly improved
by using hybridization probes that are complementary to
the entire tRNA. Of course, the application of full-length
hybridization probes does not allow the discrimination of
single nucleotide differences in tRNA. Here, we describe a
systematic method that utilizes the advantage of full-length
hybridization but still allows discrimination of single nucleot-
ide differences in tRNA.

MATERIALS AND METHODS

tRNA sequence analysis

tRNA sequences were obtained in the FASTA format from
http://lowelab.ucsc.edu/GtRNAdb/. tRNA sequences at this
site have been annotated according to anticodon, genome
location and quality score by tRNAScan-SE (9,10), which
mines completed genome sequencing data for tRNAs.
Complete genome tRNA sets were processed by alignment
in CLUSTAL X (19) to distinguish repeated sequences. For
the six species analysis of tRNASer(AGA), phylogenetic
distances were determined by CLUSTAL X following
alignment and drawn using NJplot (20,21).

Following raw data collection, human tRNA sequences
were manually curated to determine the extent of variation
in 11 discrete tRNA regions. Primary sequence data were
analyzed for correct tRNA structure dependent upon base
pairing of acceptor, D, anticodon and TYC stems. Variation
in stem regions was coded to indicate whether or not accept-
able base pairing (Watson–Crick plus G–U) is maintained.
Among the human tRNA sequence set, just three sequences
with greater than two pairing errors were found and excluded
from our analysis.

Ligation procedure using 30mer model RNA

A model 30mer RNA oligonucleotide for testing the ligation
method was designed to contain minimal secondary structure
when the nucleotide at the 15th position is U (Table 1). Four
chemically synthesized 30mer RNAs (Dharmacon Research,
Lafayette, CO) have the same sequence at all positions except

the 15th nucleotide. All 28 floater and 3 anchor oligonu-
cleotides were synthesized by Integrated DNA Technologies
(IDT, Coralville, IA).

The ligation reaction was performed at 30�C for up to 1 h
in 0.15 mM 30mer RNA, 0.5 mM floater oligonucleotide,
0.38 mM 50-32P-labeled anchor oligonucleotide in 66 mM
Tris–HCl, pH 7.6, 6.6 mM MgCl2, 10 mM dithiothreitol
(DTT), 66 mM ATP, 15% DMSO and 0.125–0.25 U/ml
T4 DNA ligase (USB, Cleveland, OH). The ligation product
was separated on 15% polyacrylamide gel containing 7 M
urea and quantified by phosphorimaging (Fuji Medicals).

Ligation procedure using human tissue samples

Total tRNA was isolated from total RNA samples on 8%
polyacrylamide gels containing 7 M urea. The tRNA bands
were visualized by UV shadowing, excised from the gel
and soaked for 1.5 h at room temperature in 50 mM
KOAc/200 mM KCl, pH 7. Gel slices were then removed
by filtration and the tRNA precipitated by ethanol, vacuum
dried and dissolved in water at 10–15 ng/ml. Total RNA
samples include HeLa (isolated using RNAwiz kit from
Ambion Inc., Austin, TX) and 6 human tissues purchased
from Stratagene (La Jolla, CA): liver (#735017), brain
(#735006), uterus (#735042), ovary (#735260), vulva
(#735067) and testes (#735064).

The ligation reaction using the purified tRNA mixture from
human samples was conducted under different conditions
for hybridization and ligation. The hybridization reaction
containing 100 ng total tRNA, 0.01 mM yeast tRNAPhe

standard, 0.13 mM 50-32P-labeled anchor oligonucleotide,
0.13 mM floater, 20 mM Tris–HCl, pH 7.6 and 50 mM
NaCl ran for 1 h at 62oC followed by 1 h at 52oC to
accommodate for differential efficiencies of the oligonu-
cleotide substrates for ligation. Ligation was then performed
at 37oC for 2 h after the addition of a 2· ligation mixture
containing 132 mM Tris–HCl, pH 7.6, 13.2 mM MgCl2,
20 mM DTT, 132 mM ATP, 30% DMSO and 1 U/ml T4
DNA ligase to the hybridization mixture. Reactions were
treated with 0.1 U/ml RNase H (Epicentre Technologies,
Madison, WI) and 0.1 U/ml Calf Intestine Alkaline
Phosphatase (Roche Applied Sciences, Indianapolis, IN) for
10 min at 37oC to reduce background. The ligation reaction
mixture was stopped by the addition of an equal volume of
9 M urea/50 mM EDTA, boiled for 2 min and then loaded
on 12% polyacrylamide gels containing 7 M urea.

Table 1. Model RNA, floaters and anchors used in this work

Anchor (50!30) Floater (50!30) Za

Set I: 50Z TACCAGGC
ATTGCTC

pZGCGTTA
CAGCGGATb

dA,dC,dG,dT,rA,
rC,rG,rU,Am,Cm,Gm,Um

Set II: 30Z pGCGTTAC
AGCGGAT

TACCAGGC
ATTGCTCZ

dA,dC,dG,dT,rA,
rC,rG,rU,Am,Cm,Gm,Um

Set III: Z+3 pGTTACAG
CGGAT

TACCAGGC
ATTGCTCZGC

dA,dC,dG,dT

Model RNA sequence (X ¼ A, C, G, U): 50-AUCCGCUGUAACGCXGAG-
CAAUGCCUGGUA
ad ¼ deoxy; r ¼ ribo; m ¼ 20-O-methyl.
bZ ¼ nucleotide with variable base or backbone composition.
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RESULTS

Diversity of tRNA isodecoder genes

tRNAScan-SE is among the most successful programs to
identify non-coding RNAs in genome sequences (9,10).
tRNAScan-SE first utilizes tRNAscan1.4 and EufindtRNA
to search for conserved tRNA sequences at defined positions,
then evaluates co-variance in conserved tRNA sequence and
secondary structure. The algorithm is capable of detecting
99–100% of tRNAs with a very low error rate (one false
positive per 15 GB).

Eukaryotic genomes generally contain several hundred
tRNA genes as predicted by tRNAScan-SE (http://lowelab.
ucsc.edu/GtRNAdb/). tRNAScan-SE is also capable of distin-
guishing tRNA pseudogenes, which range from �170 in the
human genome to �22 000 in the mouse genome. There are,
however, significant outliers. Danio rerio (zebra fish) has
�6000 predicted tRNA genes. Canis familiaris (dog) contains
�400 genes for tRNALys with anticodon CTT, which are
excluded from our analysis to avoid unnecessary bias.

We chose to focus on tRNA sequences from 11 eukaryotic
genomes as they represent a wide range in the phylogenetic
tree and encompass many model organisms (Figure 1 and
Table S1). These 11 genomes have predicted tRNA gene
counts from 171 (fission yeast) to 568 (worm). The number
of tRNA isoacceptors among these 11 species range from
41 (budding yeast) to 55 (chimp).

What is remarkable and not predicted before genome
sequencing, however, are the numbers of tRNA genes having
the same anticodon sequence but differences elsewhere in the
tRNA body (Figure 1). We tentatively use the nomenclature
of ‘tRNA isodecoder gene’ to describe these tRNA seq-
uences. tRNA isodecoders have the same anticodon sequence
(hence they decode the same codon), i.e. they belong to the
same isoacceptor class, but have sequence differences
elsewhere in the tRNA body. One tRNA sequence within
each isoacceptor class, generally the one with the highest
gene copy number, is arbitrarily designated as the majority
member. The number of tRNA isodecoder genes within an
isoacceptor class is the count of distinct tRNA sequences
within this class excluding the majority member. For
example, the human tRNAArg(ACG) isoacceptor class has
two different sequences with four and three gene copies.
They differ by a single nucleotide at position #50. The four
gene-copy tRNAArg(ACG) is the majority member and has
the sequence of U50, and the three gene-copy tRNAArg(ACG)
is classified as the isodecoder gene and has the sequence of
C50. The number of tRNA isodecoder genes is therefore
one for the tRNAArg(ACG) isoacceptor class. By this account,
the total number of different tRNA gene sequences in these
11 genomes is the number of isoacceptors (i.e. from 41 to
55) plus the number of isodecoders (i.e. from 10 to 246).

The fraction of tRNA isodecoder genes (the sum of all
isodecoder genes divided by the total number of tRNA

Figure 1. tRNA genes and isodecoder genes in 11 eukaryotes. (A) Cladogram of the organisms based on the NCBI taxonomy browser (40,41) which include two
single cell yeast, worm, fruit fly, fugu, chicken and five mammals, dog, rat, mouse, chimp and human. The fraction of tRNA isodecoder genes among all tRNA
genes is indicated. *: � 400 genes in the tRNALys(CTT) isoacceptor class in the dog genome are not included in this count. (B) The number of tRNA genes (left),
isoacceptors (middle) and isodecoders (right) in these organisms.

Nucleic Acids Research, 2006, Vol. 34, No. 21 6139

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/34/21/6137/3100499 by guest on 20 M

arch 2024



genes) has distinct groupings among these 11 species when
plotted on a cladogram (Figure 1A). This fraction is <10%
in the budding and fission yeast, 12–18% in fruit fly and
worm, and increases to 35–46% in fugu, chicken, dog, rat
and mouse. The fraction is highest among the two primates
where >50% of tRNA genes are isodecoder genes. This
phylogenetic grouping indicates that the diversity of tRNA
isodecoder genes cannot be simply derived from inaccuracies
in genome sequencing (a small number of them may be
attributed to lower sequencing accuracy in some genomes).
The fraction of tRNA isodecoder genes corresponding to
the phylogenic grouping of these organisms may suggest
that they perform some kind of heretofore under-appreciated
functions. It may also be a result of genome expansion.

We analyzed the sequence features of tRNA isodecoder
genes further in six commonly studied species: budding
yeast, worm, fruit fly, mouse, chimp and human (Figures 2
and 3). The number of tRNA isoacceptors range from 41 to
55. These isoacceptors occur between 1 and 60 times in the
genome (Figure 2A). Budding yeast and fruit fly have
relatively few tRNA genes (270–290) and the number of
occurrences for each gene is relatively low. Worm has
a high number of tRNA genes (568) and the number of
occurrences is broadly distributed. A few isoacceptors in
mammals have high copy numbers that distinguish them
from the other isoacceptors.

The number of tRNA isodecoder genes varies from very
low (10 in yeast) to very high (225–246) in chimp and

0 5 10 15 20 25 30
0

5

10

15

20

25 S. cerevisiae
slope = 0.02
R = 0.24

N
um

be
r 

of
 is

od
ec

od
er

s

gene copy number of tRNA isoacceptor
0 5 10 15 20 25 30

0

5

10

15

20

25 C. elegans
slope = 0.13
R = 0.62

N
um

be
r 

of
 is

od
ec

od
er

s

gene copy number of tRNA isoacceptor
0 5 10 15 20 25 30

0

5

10

15

20

25 D. melanogaster
slope = 0.10
R = 0.44

N
um

be
r 

of
 is

od
ec

od
er

s

gene copy number of tRNA isoacceptor

0 5 10 15 20 55 60 65
0

5

10

15

20

25 M. musculus
slope = 0.44
R = 0.92

N
um

be
r 

of
 is

od
ec

od
er

s

gene copy number of tRNA isoacceptor
0 5 10 15 20 25 30

0

5

10

15

20

25 P. troglodytes
slope = 0.64
R = 0.90

N
um

be
r 

of
 is

od
ec

od
er

s

gene copy number of tRNA isoacceptor
0 5 10 15 20 25 30

0

5

10

15

20

25 H. sapiens
slope = 0.64
R = 0.89

N
um

be
r 

of
 is

od
ec

od
er

s

gene copy number of tRNA isoacceptor

Figure 2. Gene copy numbers of tRNA isoacceptors versus the number of occurrence or the number of isodecoders. (A) Plot of the gene copy number of tRNA
isoacceptors and the number of occurrence for each isoacceptor class. (B) Plot of the gene copy number of tRNA isoacceptors and the number of tRNA
isodecoders for each isoacceptor class. A good linear correlation (R-value between 0.89 and 0.92) exists between the gene copy number of tRNA isoacceptors and
the number of tRNA isodecoders in the three mammals.
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human. The number of tRNA isodecoder genes in mammals
has a good linear correlation (R-value of 0.89–0.92 and slope
of 0.44–0.66) to the gene copy number of their corresponding
isoacceptors (Figure 2B). The highest slope possible in this
plot would be 1.0 when every tRNA gene is unique, after
subtracting the majority member of isoacceptor classes.
A slope of 0.64 shows that the bulk of human and chimp
tRNA genes is unique. As for the non-mammal species, a
linear correlation has significantly lower R-values (0.24–0.64)
and smaller slopes (0.02–0.13). This result suggests that
the evolutionary appearance of tRNA isodecoder genes in
non-mammals may be less directed than in mammals.

The same description of tRNA isodecoder genes can be
applied to bacterial tRNA genes in species with sequenced
genomes (Supplementary Table S2 and Supplementary
Figure S1). As described in the Introduction, the number of
tRNA isodecoder genes in E.coli K12 is 6 among 86 genes
(6/86 ¼ 7%). Among the 139 bacterial genome sequences,
the number of isodecoder genes range from 0 to 26 and the
fraction of tRNA isodecoder genes range from 0 to 0.30. A
great majority of species cluster in the lower regime of the
tRNA gene-isodecoder gene plot (Supplementary Figure S1).

An in-depth sequence analysis of the tRNASer(AGA)
isoacceptor class among the six eukaryotic organisms is
shown in Figure 3. This isoacceptor is chosen on the basis
of simplicity of comparison as well as the number of isode-
coder genes in each species. This tRNA isoacceptor has 11
gene copies in yeast, 15 copies in worm, 8 copies in fruit fly
and mouse, and 9 copies in chimp and human. The yeast genes
have 2 sequence variants, 10 being the same plus 1 distinct
isodecoder gene. Worm has 3 sequence variants, 13 being
the same plus 2 isodecoders. Fruit fly, mouse and chimp
have two isodecoders each and human has three isodecoders.
The yeast tRNA sequences are noticeably different from all
others. All tRNA genes in worm and fruit fly are clustered
together among themselves. The mammalian sequences
cluster more closely according to their isodecoder genes than
to their species. In fact, the majority sequence (with six copies
each) of these mammalian species is identical.

Most sequence changes in the tRNASer(AGA) isodecoder
genes do not alter the secondary or tertiary structure of

tRNA. The fruit fly isodecoder genes involve an A–U to
G–U pair change in the acceptor stem and C-to-U in the
variable region of the D-loop. Sequence change in one
worm isodecoder gene is an A–U to G–U in the stem of
the long variable loop. The major sequence changes in the
mammalian isodecoder genes involve A–U to G–U or G–U
to G–C changes in various stems or a U-to-C change in an
unpaired region in the variable loop. The two exceptions
are a worm isodecoder gene (Ce2), which changes an A–U
to C*U mismatch in the acceptor stem, and a mouse isode-
coder gene (Mm2), which changes a G–C to A*C in the
TYC stem.

Human tRNA isodecoder genes

We further analyzed the locations of sequence changes in
human tRNA isodecoder genes in detail (Figure 4). Eukary-
otic tRNA genes are transcribed by RNA polymerase III,
and a portion of the Pol-III promoter is within a tRNA
gene (22,23). The internal promoters constitute two discrete
regions corresponding to nt 8–19 (box A) and 52–62
(box B) of a tRNA. Nucleotides 8, 14, 18 and 19 in box A,
and nt 53–56, 58 and 61 in box B are highly conserved
among all tRNAs because of tRNA tertiary structure.
Hence, only �7 nt within box A and 6 nt within box B are
variable. Human tRNA genes vary at 6.4% of these variable
nt in box A and 12.3% in box B (Figure 4A). These sequence
differences may lead to differential tRNA expression in
human tissues or developmental stages.

Sequence changes in tRNA isodecoder genes can also be
divided into nine regions according to tRNA secondary
structure (Figure 4B). The number of sequence changes is
determined by comparison of isodecoders to the majority
variant. Frequency of sequence changes is the number of
changes in each of the nine regions divided by the total
number of nucleotides surveyed in that region. The largest
frequency of sequence changes is among the three non-
conserved residues in the TYC loop: among the 675 nt at
these positions, 104 nt are counted as different in isodecoders.
Therefore, 15.4% of these three nucleotides vary. The next
most variable region is the D-loop (10.8%) among positions

Figure 3. Comparative sequence analysis of the tRNASer(AGA) isoacceptor family across six species. S.c.: budding yeast; C.e.: worm; D.m.: fruit fly;
M.m.: mouse; P.t.: chimpanzee; H.s.: human. ‘-Nx’ indicates the gene copy number. For the non-mammalian species, the tRNA sequence variants are most
similar within the same organism. The tRNA sequence variants are conserved across mammalian species. Each phylogenetic branch has unique sequence
signatures (e.g. for the 2–71 bp, yeast sequence is GU; worm and fruit fly sequence is CG; and mammal sequence is TA).
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15, 16–17 (variable from 1 to 3 nt) and 20 (variable from 1 to
3 nt). These high frequency regions overlap with the A and
B boxes that constitute the internal promoters for Pol-III
transcription. Sequence changes in the stems are between
2.6 and 9.4%. More than four-fifths of sequence changes in
the stems follow the rules of Watson–Crick base pairing
and G–U wobble. Of the remaining one-fifth of sequence
changes that disrupt Watson–Crick or G–U pairing, 42%
(30/72) are A–C pairs. A–C pairs in RNA helices have pKa

values of 6.0–6.5, and protonated A–C pairs are structurally
analogous to and as stable as G–U pairs (24,25). A–C pairs
in tRNA stems have been found to be functional in some
bacterial tRNAs (26). The function of tRNA isodecoders
containing A–C pairs may depend on local pH which can
vary among subcellular environments.

An experimental method to distinguish tRNA
isodecoders

Experimental methods used to analyze the expression
of RNA transcripts are generally based on hybridization
differences of complementary oligonucleotide probes, primer
extension using a mixture of deoxy and dideoxynucleotide
triphosphates, and RT–PCR using primers that allow differ-
ential extension by reverse transcriptase. These methods
work well when the RNA transcript is not very structured
and post-transcriptional modifications do not impede hybrid-
ization or extension by the reverse transcriptase. Using
purified tRNA mixture from HeLa cells, we tried to measure
the expression of tRNA isodecoders by (i) differential
hybridization of complementary oligonucleotides followed
by RNase H cleavage; (ii) primer extension with up to
3· deoxynucleotide trisphosphates and 1· dideoxynucleotide
trisphosphate; (iii) RT–PCR using primers with different 30

terminal nucleotides. Although HeLa tRNAs can sometimes

be detected by at least one of these methods, the result was
either poorly reproducible or had very low sensitivity (data
not shown). The primary problems of using these standard
methods for eukaryotic tRNA appear to be derived from the
extensive tRNA structure and the presence of tRNA modifi-
cations that interfere with hybridization/primer extension.

We devised a systematic method to distinguish tRNA
isodecoder products that differ by a single nucleotide. The
method is based on enzymatic ligation of two oligonu-
cleotides using tRNA as template (Figure 5), similar to
those described for the analysis of mRNA transcripts
(27,28). In order to quantify the relative amount of two
tRNA isodecoder products, two different types of oligonu-
cleotide pairs are needed as ligation substrates. The first
pair is only efficiently ligated using one of the two
tRNA isodecoder templates. This pair of oligonucleotides is
designated as discriminating (D-oligo), and there are two
different D-oligos for each tRNA isodecoder pair. The second
oligonucleotide pair is efficiently ligated for both tRNA
isodecoders. This type is designated as non-discriminating
(N-oligo), and there is one N-oligo for each tRNA isodecoder
pair. The amount of ligation product using the D-oligo
corresponds to [tRNA-1]/[tRNA-2] or [tRNA-2]/[tRNA-1],
whereas the amount of ligation product using the N-oligo
corresponds to [tRNA-1]+[tRNA-2]. These data points
together determine the relative amount of tRNA isodecoder
pairs between two samples or may even be used to character-
ize the amount of tRNA isodecoder pairs in the same sample.

In order to find D-oligos for tRNA isodecoder pairs with a
single nucleotide difference, we first determined the ligation
efficiency using four model 30mer RNAs (Table 1). These
RNAs have identical sequences except at the 15th position
which is A, C, G or U. The ligation efficiency using these
30mer RNA templates is examined using 28 custom ordered
oligonucleotide pairs in three configurations (Figure 5A

Figure 4. Frequency of human isodecoder gene variations. Percentages indicate observed changes in each region divided by the total number of nucleotides
assessed in that region. (A) Percent sequence variations in the A and B boxes which correspond to internal promoter regions of RNA polymerase III. (B) Percent
sequence variations in nine regions according to the tRNA secondary structure. Invariant and anticodon nucleotides in all tRNAs are shown as filled black or gray
circles. Percentages in parentheses (stems only) indicate sequence changes that result in non-Watson–Crick and non-GU base pairs.
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and Table 1). Set I and set II oligo pairs have the ligation
junction at the 30 and 50 side of the 15th nucleotide in the
RNA, respectively. Set III oligo pairs have the ligation
junction displaced 3 nt downstream of the 15th nucleotide.
Each set has one identical ‘anchor’ oligonucleotide substrate
and 12 each (set I and II) or 4 (set III) different ‘floater’
oligonucleotide substrates. The floater oligonucleotides
from sets I and II have different sequences or backbone
modifications (Table 1). The floater oligonucleotides in set
III have different sequences and the same 20 deoxy backbone.

Our results show that these 28 oligo pairs are sufficient to
provide unique D and N-oligos for each of the 6 nt pairs in
the RNA (Table 2). Under the standard ligation condition,
the discrimination factors for the D-oligos are between
5-fold and 108-fold which should be sufficient for the
discrimination of single nucleotide changes in tRNA iso-
decoder pairs. The amount of ligation product has a linear
correlation with the known mixture of two model RNAs
using the D-oligos and has little dependence using the
N-oligo (e.g. C15 and G15 shown in Figure 5B).

tRNA isodecoder in human samples

We next applied the D- and N-oligo solutions from model
RNA studies to human samples to demonstrate the feasibility
of this ligation approach for the analysis of biological
RNAs (Figure 6). Probes for three tRNA isodecoder pairs
were designed for (i) tRNAPro(CGG) U39 versus C39;
(ii) tRNAAla(CGC) A42 versus G42 and (iii) tRNAArg(UCG)
A51G52 versus C51A52, in addition to probes for yeast
tRNAPhe standard (Supplementary Figure S2). To facilitate
detection, the length of the oligonucleotide substrates is

designed such that their reaction products differ by at least
5 nt. This way, the analysis of all four tRNAs can be carried
out in a single ligation reaction. This length difference is
achieved by the extension of a string of deoxy-A residues
at the 50 end of the oligo substrates where necessary (Supple-
mentary Figure S2).

When these oligo pairs are ligated using the total tRNA
mixture from HeLa, varying amounts of ligation products
are obtained (Figure 6A). The identity of these ligation
products are confirmed by carrying out the ligation separately
with each oligo pair (data not shown). This result shows that
the ligation strategy to study tRNA isodecoder products
works for biological RNA samples as well as the model RNA.

We then used these oligo pairs to compare the amount of
the corresponding tRNA isodecoder products in the total

Figure 5. Detection of single nucleotide change in a model 30mer RNA by ligation. (A) The basic strategy. RNA oligonucleotides with a single nucleotide
difference are used as templates for the ligation of two complementary oligonucleotides by T4 DNA ligase. To find the optimal ‘solution’ for each sequence at
the 15th position (open and filled black circles), 28 oligonucleotides containing different sequences and backbone modifications at the ligation junction are tested.
These oligos are named ‘floaters’ to distinguish them from the other oligonucleotide substrate that are the same in each set of the ligation reactions (‘anchors’).
The ligation junction is located 30 to the 15th position (set I), 50 to the 15th position (set II) and 3 nt away from the 15th position (set III). (B) Ligation reaction
using a defined mixture of C15 and G15 30mer RNAs (left). The particular floater used (II-mG) is selected as the best solution that prefers C15 over G15 after
screening 24 floaters in separate experiments. (Right) Quantification of the ligation products using the D-oligos (II-mG and II-dC floaters) and the N-oligo
(III-dC+3) for C15 versus G15.

Table 2. D- and N-oligos for nucleotide pairs

Nucleotide
pair

D-oligos N-oligo

A and C I-dT (A/Ca; 5b), II-mG (C/A, 48), RF (A/C, 1.4c) III-dG+3
A and G II-rU (A/G; 41), II-dC (G/A, 27), RF (A/G, 20) III-dC+3
A and U II-mU (A/U; 34), I-dA (U/A, 18), RF (A/U, 21) III-dA+3
C and G II-mG (C/G; 108), II-dC (G/C, 30), RF (C/G, 5) III-dC+3
C and U II-mU (C/U; 6), I-dA (U/C, 10), RF (U/C, 6) III-dG+3
G and U II-dC (G/U; 107), I-dA (U/G, 91), RF (U/G, 1.8) III-dG+3

aA/C ¼ prefers A, C/A ¼ prefers C and so on.
bx-Fold ¼ amount of differential ligation product when using this D-oligo
at 30�C and 0.125 U/ml T4 DNA ligase for 1 h (A+G; A+U; C+G; G+U) or
0.25 U/ml T4 DNA ligase for 0.5 h (A+C, C+U).
cRF: reaction factor ¼ ratio of maximum amount of ligation product using
specific D-oligos.
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tRNA mixture from six human tissues (Figure 6B). Total
tRNAs from these tissues were first purified on a denaturing
gel. To control for potential RNAs from different tissues
that may alter the ligation efficiency, a constant, known
amount of yeast tRNAPhe is included in every ligation
reaction as control. The amount of the ligation product
using the N-oligos shows that among tRNAPro(CGG) and
tRNAAla(CGC), brain has the most and ovary and vulva
have the least of these tRNAs. The brain sample produces
more D-oligo products for tRNAPro(CGG) and tRNAAla(CGC)
as well.

The ratio of the D-oligo product divided by the N-oligo
product for the same tissue after normalization to the yeast
tRNAPhe standard can be used to compare the relative
amount for one particular tRNA isodecoder in each tissue
(Figure 6C). This analysis shows that although the total
amount of these tRNAs can be significantly different in
these tissues, the relative amount is all within 2-fold to that
in brain.

We also attempted to determine the ‘absolute’ ratio of
tRNAPro(CGG)-U39 and C39 using their corresponding
D-oligo pairs, i.e. one prefers U over C and the other
prefers C over U (D1 and D2 in Supplementary Figure S2).
tRNAPro(CGG) can be detected in each tissue using D1
or D2-oligo pairs. However, the relative ligation efficiency
for the U-preferring D-oligo is six times greater than the
C-preferring D-oligo when using the model 30mer RNA
template. Assuming this relative reaction factor (U/C ¼ 6;
Table 2) is the same for tRNAPro(CGG), the fraction
of tRNAPro(CGG)-U39 is then obtained according to
[D(U39)-product]/([D(U39)-product] + 6·[D(C39)-product])

(Figure 6D). This fraction of tRNAPro(CGG)-U39 is between
0.09 and 0.20 among these tissues, and the remaining
fraction is presumably tRNAPro(CGG)-C39. Three of the
four tRNAPro(CGG) genes have C39 and one has U39.
Hence, a completely unbiased expression should generate
a fraction of 0.25. This fraction is close to that obtained
from vulva, but markedly higher than that from ovary.

DISCUSSION

This work shows that eukaryotic tRNA genes derived
from genome sequences are more complex than previously
appreciated. A surprise finding is the prevalence of tRNA
isodecoder genes, defined as tRNA genes having the same
anticodon but different sequences elsewhere in the tRNA
body. More than 50% of human and chimp tRNA genes are
isodecoders. Most sequence changes in tRNA isodecoder
genes follow sequence constraints for the secondary and
tertiary structure of tRNA. The phylogenetic relationship
of tRNA isodecoder genes in 11 eukaryotes suggests that
some may perform unique functions in organisms belonging
to the same phylogenetic branch. The relatively high percent-
age of sequence changes in the internal RNA polymerase
III promoter regions suggest that differential control for the
expression of some isodecoder genes is feasible.

Pressing questions on tRNA isodecoders clearly are about
their functions. The increase in the tRNA gene number and
subsequent divergence is likely the result of vertebrate
genome expansion. It is possible that they are derived from
neutral drift and do not perform a distinct function. On the

Figure 6. Detection of tRNA isodecoder distribution in human samples. (A) Simultaneous detection of three tRNA isodecoder pairs plus yeast tRNAPhe standard
in a total tRNA mixture from HeLa. Asterisk (*) indicates a ligation product derived from the mixture of N-oligos without tRNA (also present weakly in the ‘No
RNA’ lane). (B) Simultaneous detection of three tRNA isodecoder pairs in a total tRNA mixture from six human tissues. (C) Relative amount of tRNA
isodecoder after normalization to the total amount of its corresponding tRNA isodecoder pair in each tissue as compared to brain. (D) ‘Absolute’ ratio of
tRNAPro(CGG)-U39 in each tissue obtained from the ligation reactions using both D-oligos for tRNAPro(CGG)-U39 and tRNAPro(CGG)-C39.
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other hand, evolved variations may confer some unique role
yet to be determined. Unfortunately, few efforts have been
devoted to study the potential functions of eukaryotic tRNA
isodecoders. The benefit of having a collection of tRNA
isodecoders in translation is unclear at this time. One can
envision that tRNA isodecoders may be more harmful than
useful in translation. In tRNA charging, each aminoacyl-
tRNA synthetase identifies a set of positive sequence/
structural determinants in the tRNA to ensure charging with
the correct amino acid (29,30). In vivo, each tRNA also car-
ries negative determinants to prevent mis-charging by the
19 other tRNA synthetases (31,32). When sequence changes
occur in the tRNA body, there is a chance that the resulting
tRNA isodecoder may become mis-charged more frequently.
Some tRNA synthetases have exquisite editing mechanisms
to eliminate mis-charged tRNAs, although these mechanisms
have been studied primarily on correct tRNA isoacceptors
charged with wrong amino acids (33,34). Mis-charging of
tRNA isodecoders may not be subject to these editing
mechanisms because they are the result of charging the
right amino acid to the wrong tRNA.

Some bacterial tRNAs regulate transcription through
attenuation or anti-termination mechanisms (35,36). In
Bacillus subtilis, several uncharged tRNAs derived from
perturbation of its cognate amino acid metabolism directly
interact with the 50-untranslated region in certain mRNA
operons. The tRNA–mRNA interaction helps control tran-
scription of amino acid biosynthesis enzymes or aminoacyl-
tRNA synthetases. A subset of eukaryotic tRNA isodecoders
may also interact with mRNAs for translational regulation.

Some bacterial tRNAs are used independently of transla-
tion as a source of activated amino acids in cell wall
biosynthesis, N-terminal attachment to proteins, or substrates
for enzymes in intermediary metabolism (37). A subset of
eukaryotic tRNA isodecoders may also be used for similar
purposes and function in non-translation activities (38).

Retroviral reverse transcription requires tRNA primers,
e.g. tRNALys3(UUU) for HIV-1 (39). Only 6 of the 15
human tRNALys(UUU) genes have the complete complemen-
tary primer binding site for the HIV-1 genomic RNA. A
subset of tRNA isodecoder may be selected to be optimal
primers for retroviral life cycle.

Speculative roles of tRNA isodecoders are manifold. This
work also describes a systematic ligation-based method to
detect and quantify relative amounts of tRNA isodecoders
in biological samples. This method has single nucleotide
resolution and is best used to distinguish pairs of tRNA
isodecoders. The method is also able to simultaneously
analyze many tRNA isodecoders in different isoacceptor
classes. One can envision the adaptation of this method to
a microarray format in order to study the expression of
tRNA isodecoder pairs from every isoacceptor family.

We now have the ability to examine tRNA isodecoder
pairs in biological samples, and we also have the ability to
measure cumulative expression from multiple tRNA iso-
decoders of an isoacceptor family using microarrays (T.P.,
unpublished data). The combination of these methods
should be sufficient to initiate functional studies of tRNA
isodecoders in a high-throughput manner. The best
target for such studies may be mammals where the number
of tRNA isodecoder genes is plentiful and some tRNA

isodecoders may perform functions that are uniquely
mammalian.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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