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ABSTRACT

MicroRNAs (miRNAs) have been implicated in
sequence-specific cleavage, translational repres-
sion or deadenylation of specific target mRNAs
resulting in post-transcriptional gene silencing.
Epstein–Barr virus (EBV) encodes 23 miRNAs of
unknown function. Here we show that the EBV-
encoded miRNA miR-BART2 down-regulates the
viral DNA polymerase BALF5. MiR-BART2 guides
cleavage within the 3’-untranslated region (3’UTR)
of BALF5 by virtue of its complete complemen-
tarity to its target. Induction of the lytic viral
replication cycle results in a reduction of the level
of miR-BART2 with a strong concomitant decrease
of cleavage of the BALF5 3’UTR. Expression of
miR-BART2 down-regulates the activity of a lucifer-
ase reporter gene containing the BALF5 3’UTR.
Forced expression of miR-BART2 during lytic repli-
cation resulted in a 40–50% reduction of the level
of BALF5 protein and a 20% reduction of the amount
of virus released from EBV-infected cells. Our
results are compatible with the notion that EBV-
miR-BART2 inhibits transition from latent to lytic
viral replication.

INTRODUCTION

MicroRNAs (miRNAs) are non-coding RNAs of about
19–24 nt that usually bind to partially complementary sites
in the 30-untranslated region (30UTR) of mRNA targets
(1,2) and either repress translation, induce degradation

or deadenylation of their targets (3). MiRNA-encoding
genes are transcribed by RNA polymerases II and III and
are processed by the RNase III Drosha to precursors (4–6)
which are converted to mature miRNAs in the cytoplasm
by the RNase III Dicer (7,8). Some but not all miRNAs
with complete complementarity to their mRNAs employ
the RNase Ago2 to direct the cleavage of their targets
(9,10). Presumably, miRNAs regulate multiple targets and
have been implicated in a variety of cellular processes as
well as diseases including cancer (11–13).

Herpes viruses such as EBV or KSHV also encode
miRNAs (14). EBV encodes at least 23 miRNAs (15–17)
within three clusters as depicted in Figure 1A. The B95.8-
strain of EBV which has a deletion of 12 kb but is fully
transformation competent encodes only eight miRNA
genes [miR-BHRF1-1-, -2, -3, miR-BART-1, -2, -3, -4 and
the partially deleted miR-BART5 (see Figure 1A)]. A
computational search for potential viral targets predicted
the DNA polymerase BALF5 as a target for miR-BART2
(15) which is encoded antisense to the 30UTR of the
BALF5 DNA polymerase and therefore has perfect
complementarity to the BALF5 mRNA (see Figure 1B).
Indeed, in addition to a presumably full-length 5.0-kb
mRNA, an ‘aberrant’ BALF5-mRNA of 3.7 kb with the
30-end exactly matching the predicted BART2-cleavage
site (15) was described in an earlier publication (18).
These authors suggested that a viral factor induced the
3.7-kb transcript and we hypothesized that miR-BART2
might represent that factor. Therefore, we experimentally
addressed miR-BART2-guided cleavage of the BALF5
mRNA as well as the biological consequence of such
a cleavage on BALF5 protein expression and virus
production.

*To whom correspondence should be addressed. Tel: +49 6841 162 3983; Fax: +49 6841 162 3980; Email: graesser@uniklinik-saarland.de

The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors.

� 2007 The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/36/2/666/2410277 by guest on 13 M

arch 2024



MATERIALS AND METHODS

Cell lines and antibodies

Adherent HeLa and 293-T cells were grown in DMEM
supplemented with 10% FCS and antibiotics (100U
penicillin ml�1 and 100 mg streptomycin ml�1) as described
(19). H.-J- Delecluse, DKFZ, Heidelberg, kindly supplied
293-EBV cells (2089) (20) which were cultivated in RPMI
supplemented with 10% FCS, antibiotics and Hygromycin
(100 mg/ml). The non-adherent EBV-infected B-cell lines
B95.8, M-ABA, Raji and Jijoye were cultured as described
inRPMI 1640 supplemented with 10%FCS and antibiotics
(21–23). BL41 is an EBV-negative Burkitt’s lymphoma line;
BL41-B95.8 is infected with the standard B95.8 strain (24).
For lytic cycle induction, cells were incubated for 48 h with
20 ng/ml TPA (12-O-tetradecanoyl-phorbol-13-acetate;
Sigma, München, Germany). Monoclonal antibody BZ-1
directed against BZLF1 was kindly provided by Martin
Rowe, Birmingham, UK; anti-ß-actin mAb was purchased
from Sigma (München, Germany).

Generation of monoclonal antibodies
against BALF5 and Ago2

An internal peptide (G66KGMWWRQRAQEGTARPE
ADT87) of the DNA polymerase BALF5 of EBV was

synthesized and coupled to KLH or OVA (PSL,
Heidelberg, Germany). Rats were immunized with 50 mg
peptide-KLH using CPG 2006 and IFA as adjuvant.
Generation of monoclonal antibodies was carried out as
described (21). Supernatants were tested in a differential
ELISA using the BALF5-peptide-OVA and an irrelevant
peptide-OVA conjugate as negative control. BALF5-
specific clone 4C12 (IgG2a) subclass was established
which recognized the EBV polymerase in western blot,
immunoprecipitation and immunofluorescence assays.
Rat monoclonal antibodies against Ago2 were generated
by immunization with a bacterially expressed GST-fusion
protein encompassing the N-terminal aa MGVLSAIPAL
APPAPPPPIQGYAFKPPRPDFGTSGRTIKLQANFFE
MD of Ago2 in the vector pGEX6P1 (9); screening by
ELISA was carried out using the Ago2-GST-fusion
protein and an irrelevant GST-fusion protein as a control.
A clone designated 3C7 (IgG1) that reacted with Ago2 in
immunoprecipitation and western blot analysis was
established for further experiments.

Immunoprecipitation analysis

Using Nanofectin� (PAA, Cölbe, Austria), 2� 106 293-T
cells were transfected with HA-tagged Ago2 expression
vector (9). After 48 h, cells were pelleted and lysed with a
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Figure 1. (A) Genomic localization of the EBV miRNAs. The top row of the schematic shows the location of the genes expressed in latently infected
B-cells. The position of the three clusters of the miRNAs within the genome is shown in greater detail in the bottom. The deletion within the B95.8
virus isolate is indicated. For the exact location of the EBV-miRNAs, refer to references 15–17. (B) Schematic representation of luciferase reporters
containing the 30 untranslated region (Luc-BALF5-30UTR) of the EBV BALF5 DNA polymerase gene. The 30UTR of BALF5 extends in leftward
orientation on the EBV genome from nucleotides 153228 to 152188. The potential binding site of EBV miR-BART2 (encoded on the opposite strand)
extends from 152768 to 152746 and was deleted by PCR in the reporter Luc-BALF5 30UTR-mut. Numbering refers to gene bank accession number
AJ507799. Note that the drawing is not to scale.

Nucleic Acids Research, 2008, Vol. 36, No. 2 667

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/36/2/666/2410277 by guest on 13 M

arch 2024



buffer containing 10mM Tris–HCl, pH 8.0, 150mM
NaCl, 0.5mM EDTA, 0.5% NP-40 (Igepal, Sigma,
München, Germany) supplemented with protease inhibi-
tor cocktail (Roche). After 20min on ice, the extract was
centrifuged in a tabletop centrifuge and �900 mg of
protein extract was incubated over night at 48C with
antibody immobilized on 50 ml of settled protein G
Sepharose (Amersham Pharmacia Biotech, Uppsala,
Sweden). The beads were collected, washed repeatedly in
lysis buffer with a final concentration of 0.5M NaCl. The
immune complexes were dissolved in SDS–gelbuffer,
separated by 10% polyacrylamide gel electrophoresis and
transferred to nitrocellulose membrane. The membrane
was incubated with Ago2-specific 3C7 (1:1000) in PBS/5%
non-fat dried milk. Bound antibody was visualized by the
ECL� method (Amersham Pharmacia Biotech) using
peroxidase-coupled goat-anti-rat as secondary antibody
(19). For immunoprecipitation of BALF5, extract of TPA-
treated Raji cells was incubated either with BALF5-specific
antibody 4C12 or irrelevant isotype control. Immune
complexes were collected using protein G sepharose
(Amersham-Pharmacia) and washed as described above.
The precipitated BALF5 protein was analysed in a western
blot using 4C12 as primary antibody; bound antibody was
visualized by the ECL method.

Plasmids

DNA manipulations were carried out according to
standard procedures. To express miR-BART2, which
maps to position 152747–152768 of the EBV genome
(Gene bank accession number AJ507799), the nucleotides
152663–152902 of EBV were PCR-amplified from
M-ABA DNA using primers BART2-pSG5 Eco 50-GTC
GAA TTC GGG TGG TGT CTG CAG CAA AAG-30

and BART2-pSG5 EcoBgl 50-TCT GAA TTC AGA TCT
GCT TCA GAC AGC CGC GGT TG-30, inserted into
pSG5 (Stratagene) to yield pSG5-miR-BART2. The
nucleotides 162–391 of the human BIC-mRNA (gene
bank accession number AF402776) that encompass miR-
155 were PCR amplified with primers 50Eco miR155
50-CGC GAA TTC CAG GAA GGG GAA ATC TGT-30

and 30Bgl miR155 50-CGC GAA TTC AGA TCT GTT
TAT CCA GCA GGG TGA CTC-30 from human
genomic DNA and inserted into pSG5 to generate
pSG5-miR-155. To yield the luciferase reporter plasmid
Luc BALF5 30UTR the nucleotides 152128 to 153228 of
the EBV genome including the putative binding site for
miR-BART2 (nucleotides 152747 to 152768) were PCR-
amplified using the primers BALF5-30UTR-for 50-GCT
CTA GAT CTG GGG GCC TGA GAC TGG ACC C-30

and BALF5-30UTR-rev 50-GC TCT AGA GGA GTA
CCA GAC AAA ACA CGC CC-30 and XbaI digested
and ligated into the vector pGL3-promoter (Promega,
Mannheim, Germany) (note that the BALF5 gene is
transcribed in 30 to 50 orientation from the viral genome).
To delete the binding site for miR-BART2, the fragments
directly adjacent to the binding sites were amplified using
the primer pairs 50-EcoNhe 50-GAC GAA TTC GCT
AGC TCT GGG GGC CTG AGA CTG GAC CC-30 and
30-Eco 50-CGA GAA TTC TGG AAG TCC ACC AGG

CAG GGA GG-30 for the 50-side and the primers 50-Eco
50-TCG GAA TTC GTG TCC ATT GTT GCA AGG
AGC G-30 and 30-Nhe 50-GCG CTA GCT CTG GGG
GCC TGA GAC TGG ACC C-30. The resulting NheI–
(EcoRI)–NheI fragment was ligated into the XbaI-
digested pGL3-promoter. The luciferase reporter plasmid
Luc LMP2A 30UTR was generated by PCR-amplification
using the primers 50LMP2A Xba 50-GCT CTA GAT CTT
GGT TCT CCT GAT TTG CTC TTC-30 and 30LMP2A
Xba 50-GCT CTA GAC ACT CTC CGT GCC CAA
GTG TTC ACC-30. The XbaI-digested PCR product was
ligated into the vector pGL3-promoter (Promega,
Mannheim, Germany). The BZLF1 expression plasmid
p509 (25) was kindly provided by H.-J- Delecluse, DKFZ,
Heidelberg.

Transfections and luciferase assays

Hela cells cultivated in 10-cm dishes were transfected
with 8 mg pSG5-miR-BART2 or pSG5-miR-155 using
Nanofectin� transfection reagent (PAA) as recommended
by the manufacturer to examine expression of miRNAs in
northern blots. Using Metafectene� (Biontex), according
to manufacturers specifications, 293-EBV cells were
transfected in six-well plates with 1 mg plasmid DNA
and 0.5mg p509, respectively. Cultivated in 24-well plates,
293-T cells were transfected with 0.2 mg pEGFP
(Clontech), 0.2 mg reporter plasmid and 0.8 mg miRNA
expressing plasmid using Nanofectin. Transfection effi-
ciency was determined in a FACScan analyser. Luciferase
assays were performed as described previously, 48 h after
transfection (20).

RNA Isolation, northern blot analysis and probe labelling

Total RNAwas extracted from cells using TriFast Reagent
(peQLab) following the vendor’s recommendations. Total
RNA measuring 100 mg was routinely electrophoresed
through 12% urea-polyacrylamide gel and then electro-
blot-transferred to nylon membrane Hybond XL (Amer-
sham) for 1 h at 2mA/cm2. The membrane was crosslinked
with UV-Stratalinker (Stratagene) at 120mJ/cm2 and then
baked at 808C for 1 h. Blots were hybridized with radio-
active labelled antisense probe overnight and then washed
twice for 15min with 5� SSC, 1% SDS and twice for
15min with 1� SSC, 1% SDS. As radioactive probes, we
used RNA probes labelled with miRVana Probe construc-
tion kit (Ambion) according to the manufacturer’s
instructions. The following antisense probes were used:
miR-BART1: 50-gca agg gcg aug aga aaa ua-30, miR-
BART2: 50-gca agg gcg aau gca gaa aau a-30, miR-155:
50-ccc cua uca cga uua gca uua a-30.

Ago2-mediated cleavage assays

Cleavage substrates that were perfectly complementary to
BART2 or miR-19b were in vitro transcribed and 32P-cap
labelled as described previously (9). Ago2-containing
complexes were immunoprecipitated using anti-Ago2
antibodies coupled to protein G Sepharose and beads
were incubated with 5 nM substrate RNA, 1mM ATP,
0.2mM GTP, 10U/ml RNasin (Promega), 100mM KCl,
1.5mM MgCl2 and 0.5mM DTT for 1.5 h at 308C in a
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total volume of 25 ml. RNA was extracted by proteinase K
digestion followed by phenol/chloroform treatment and
analysed by 8% denaturing RNA–PAGE. Radioactive
signals were detected by autoradiography.

EBV load measurement

To determine the amount of virus released from 293-EBV
cells, supernatants were collected between 24 and 72 h
after transfection, DNA was extracted using the QIAmp
DNA Blood Mini Kit (Qiagen) according to the manu-
facturers’ instructions. Quantitative EBV–PCR was per-
formed as hot-start real-time PCR using LightCycler
(Roche) as described (26).

RESULTS

miR-BART2 down-regulates a luciferase
construct containing the 3’UTR of the viral
BALF5 DNA polymerase

Expression plasmids for EBV miR-BART2 and the human
cellular miR-155 as control were generated. Expression of
the miRNAs was tested by northern blotting (Figure 2A).
In both cases, a signal for the precursor and the mature
miRNAs co-migrating with the endogenous miRNAs was
observed. A schematic representation of the reporter
plasmids encoding the firefly luciferase gene followed by
the BALF5-30UTR which contains or deletes the putative
recognition site for miR-BART2 is shown in Figure 1B.
Co-expression of miR-BART2 and the luciferase reporter
resulted in an �40–50% down-regulation of the luciferase
activity (P=0.00000066, Figure 2B) as compared to the
control. Neither the reporter with a deleted miR-BART2
recognition site nor the empty reporter was responsive to
miR-BART2 (P=0.257 and P=0.27, respectively;
Figure 2C and D, respectively). Additionally we tested a
luciferase reporter containing the 30UTR of the EBV latent
membrane protein 2A (LMP2A) as an unspecific target of
miR-BART2. As shown in Figure 2E, this reporter
construct showed no miR-BART2-mediated decrease in
luciferase activity (P=0.29). These results further con-
firmed the specificity of the observed inhibitory effect of
mir-BART2 on BALF5. Also, the cellular miR-155 had no
significant effect on the reporter containing the intact
recognition site (P=0.0923, Figure 2F). Our experiments
indicate that miR-BART2 targets the BALF5 30UTR at the
predicted site and suggest a role of miR-BART2 for
BALF5 expression.

Loss of miR-BART2 and RNA cleavage
activity during EBV lytic replication

miRNA-guided cleavage requires the association with
Ago2 (9). We analysed whether miR-BART2 indeed asso-
ciates with Ago2 and guides the sequence-specific endonu-
cleolytic cleavage of the BALF5 30UTR. The BALF5
polymerase is required for lytic viral replication but is not
present in latent infection. Consequently, we investigated
whether cleavage of BALF5 occurs both in BL41-B95.8 and
uninfected BL41 cells after lytic induction by the
phorbol ester TPA (12-O-tetradecanoylphorbol-13-acetate).

To carry out these experiments, an Ago2-specific rat
monoclonal antibody designated 3C7 (IgG2a) was gener-
ated as described previously (21); as shown in Figure 3A,
the antibody clearly precipitated transiently expressed
Ago2 protein while the control antibody yielded no
signal. Cytoplasmic extracts were subjected to immuno-
precipitation using 3C7 and incubated with an in vitro
transcribed, 32P-end-labelled RNA containing the cognate
miR-BART2-binding site. Uninfected parental BL41 cells
were used as a control. As can be seen in Figure 3B, the
non-replicative BL41-B95.8 extracts (‘�TPA’) showed
cleavage activity that was strongly reduced upon TPA-
induced lytic replication (‘+TPA’). The non-infected BL41
control showed no cleavage activity. These observations
were extended to extracts from EBV-positive B95.8 (type 1
EBV), Jijoye cells (type 2 EBV) and EBV-negative BJAB
cells (Figure 3C, left panel). No specific cleavage signal was
observed for the EBV-negative BJAB extract. Again, the
precipitates from EBV-positive cells cleaved the RNA
substrate at the characteristic nucleotide indicating that
miR-BART2 indeed functionally associates with endogen-
ous Ago2 (lanes 2 and 4; the cleavage product is indicated
by an arrow) and had only a marginal cleavage activity
after lytic induction (lanes 3 and 5). We reproducibly
observed a higher cleavage activity in Jijoye cells as
compared to B95.8. This might be due to the fact that
generally, a higher proportion of the cells infected with the
B95.8 strain spontaneously enter the lytic cycle than cells
infected by other EBV strains, like Jijoye. As a control, all
extracts showed cleavage of a substrate for the miR-19b
miRNA regardless of the presence or absence of EBV or
treatment with TPA (right panel of Figure 3C; the cleavage
product is indicated by an arrow). The digest of the
substrate using RNase T1 confirmed that the cleavage took
place exactly at the predicted sites within the substrates and
also matched the aforementioned 30-end in the ‘aberrant’
BALF5-mRNA of 3.7 kb (27,28). The additional bands
observed are typically present in these cleavage assays (9).
Our data demonstrate that miR-BART2-guided cleavage is
strongly reduced after induction of the lytic cycle.
The reduction in cleavage activity could either be due to

inhibition of binding to Ago2 or a reduction in miR-
BART2 levels. To test for the latter we analysed miRNA
expression by northern blotting. The blot obtained using a
32P-labelled probe for miR-BART2 is shown in Figure 3D,
left panel, and was quantified using a PhosphoImager. The
amount of the miR-BART2 in Jijoye and B95.8 cells was
reduced upon TPA treatment by 33% and 36%, respec-
tively and nomiR-BART2 signal was seen in EBV-negative
BL41 cells; the induction of the lytic replication was verified
by the up-regulation of the BZLF1 protein (Figure 5A).
We also observed a reduction for the viral miR-BART1
(27% in Jijoye and 27% in B95.8 cells, Figure 3D, right
panel) but an increase for the cellular miR-155 by 75%, in
Jijoye, 96%, in B95.8 and 360% in BL41 cells after treat-
ment with TPA (Figure 3D, middle panel). The amount of
cellular miR-19b after TPA treatment was separately deter-
mined for induced and untreated B95.8 cells and we
observed a slight decrease after TPA administration
(data not shown). Such a TPA-induced decrease for
miR-19b and an increase for miR-155 was described for
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Figure 2. miR-BART2 down-regulates the BALF5 30UTR. (A) Northern blot detection of ectopically expressed miR-BART2 and miR-155 using the
indicated probes. RNA extracted from HeLa cells 48 h after transfection with the vector pSG5-miR-BART2 (lane designated ‘HeLa+miR-BART2’)
was analysed in parallel with RNA from BL41 and B95.8 cells (EBV-negative and -positive, respectively). Total RNA of HeLa cells either transfected
or untransfected with pSG5-mir-155 was analysed by northern blotting for the expression of miR-155. The positions of the precursor and the mature
miRNA are indicated. (B) Effect of miR-BART2 on the BALF5 30UTR. miR-BART2 and the Luc-BALF5-30UTR reporter were co-expressed in the
indicated combinations. The activity obtained with the reporter alone was set to 100%. Graph B represents the mean values of six independent
experiments carried out in duplicate (�SEM). (C) miR-BART2 and a luciferase reporter containing the BALF5 30UTR with a deletion of the
BART2-recognition site were co-expressed in the indicated combinations and analysed as in (B). (D) Effect of miR-BART2 on the parental (empty)
vector pGL3-promoter (‘Luc’). MiR-BART2 and the pGL3-reporter were co-expressed in the indicated combinations. The activity obtained with the
reporter alone was set to 100%. The statistical analysis showed an insignificant effect (P=0.257). (E) miR-BART2 and a luciferase reporter
containing the LMP2A 30UTR were co-expressed in the indicated combinations and analysed as in (B). The activity obtained with the reporter alone
was set to 100%. (F) Effect of miR-155 on the pGL3-BALF5 30-UTR reporter; the reporter alone was set to 100%. The statistical analysis showed an
insignificant effect (P=0.092). Graphs C, D, E and F represent the mean values of four independent experiments carried out in duplicate (�SEM).
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treated (�TPA) with tetradecanoylphorbol acetate (TPA), was assayed in a northern blot with the indicated 32P-labelled probes. The loading control
(tRNA) is shown below each blot.
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the EBV-negative myeloid HL60 cells (29). In summary,
miR-BART2 associates with Ago2 and guides the
sequence-specific cleavage of the BALF5 mRNA. Upon
induction of the lytic cycle, miR-BART2 expression is
down-regulated resulting in reduced cleavage of BALF5
mRNA.
Because we saw a decrease of miR-BART2 during lytic

replication, the activity of the pGL3-BALF5-30UTR
reporter and the reporter featuring the deletion of the
miRNA-binding site was compared in 293 cells harbour-
ing the B95.8 strain of EBV (2089) (20) with or without
BZLF1-mediated virus production. The induction of
the lytic cycle should lead to a reduced repression
(‘de-repression’) of the BALF5 30UTR due to the reduced
amount of miR-BART2. We observed that the empty
luciferase vector alone was stimulated by the BZLF1
expression using the expression vector p509 about 2.4-fold
(P=0.006) (data not shown), which is probably due to
the presence of a BZLF1-responsive AP-1 site present in
the SV40 promoter driving the expression of the luciferase
in the pGL3-promoter vector we used. However as shown
in Figure 4A, the Luc BALF5-30UTR construct exhibited
an about 7.7-fold stimulation (P=0.003) upon lytic cycle
induction, leading to a calculated induction of 3.2-fold. In
contrast, the mutated BALF5-30UTR luciferase vector
was stimulated by the BZFL1 expression about only about
1.6-fold. This induction, however, was statistically not
significant (P=0.07; Figure 4B). We attribute the
‘de-repression’ to the reduced amount of miR-BART2
upon lytic cycle induction.

miR-BART2 expression results in reduction
of BALF5 DNA polymerase levels

As no BALF5 is present in latent infection, we reasoned
that enforced expression of miR-BART2 during the lytic
replication should lead to cleavage of BALF5 mRNA and
reduce the BALF5 protein level. After TPA-induction of
B95.8 cells, we detected the band of the BALF5 protein
with the correct size of �110 kDa by western blotting and
immunoprecipitation using novel BALF5-specific mono-
clonal antibodies (Figure 5A and B, respectively) in
induced but not in uninduced cells; we also observed a
band of the same mobility in various EBV-infected B-cell
lines like Raji, BL41-B95.8 or M-ABA (data not shown).
The effect of miR-BART2 on BALF5 levels was assayed
in 293-EBV cells. Lytic cycle was induced by expression of
the viral trans-activator BZLF1 using the plasmid p509.
As shown in Figure 5A, right panel, BZLF1 induced
BALF5 in 293-EBV cells. The co-expression of BZLF1
and the miRNA BART2 resulted in a 30–40% reduction
of BALF5 at the protein level (Figure 5C, left panel),
which was comparable to the reduction observed in
the luciferase reporter assays. In contrast, the control
miR-155 had no effect (data not shown). The statistical
analysis of the reduction of BALF5 levels by miR-BART2
by western blot of three independent assays is shown in
Figure 5C, right panel (P=0.0037). As the BALF5 DNA
polymerase is essential for efficient viral replication, the
reduction of BALF5 protein levels by miR-BART2 should
result in a diminished virus production. We quantified by

real-time PCR (26) the amount of virus released by the
293-EBV cell line in the absence or presence of ectopically
expressed miR-BART2. In five separate experiments, we
found that co-expression of miR-BART2 and BZLF1
resulted in a statistically significant reduction (P=0.0039)
of viral load by about 20% as compared to the control.
The expression of miR-155 induced a slight, but insignif-
icant reduction of virus released (P=0.155) with or
without induction of viral replication by BZLF1 using
plasmid p509. This is shown in Figure 5D. We take this
data as supportive evidence that the miR-BART2 reduces
BALF5 protein levels but point out that this does not
reflect the physiological situation were the miR-BART2
levels decrease during lytic cycle induction. Finally,
we unsuccessfully tried to induce lytic replication by
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Figure 4. Reduced repression (‘De-repression’) of the BALF5-30UTR
during lytic cycle replication. The pGL3 vector containing the BALF5-
30UTR (A) or the reporter with the mutated BALF5-30UTR (B) were
transfected alone or with the p509 vector encoding the lytic activator
BZLF1 into 293-EBV cells. The luciferase activities observed without
p509 were set to 100%. Activation of Luc-BALF5-30UTR with p509
was 7.7-fold (P=0.003); activation for pGL3 with the mutated binding
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Figure 5. miR-BART2 down-regulates BALF5 polymerase. (A) Identification of BALF5 protein using the monoclonal antibody 4C12. Whole-cell
extracts of B95.8 B-cells either treated (+) or untreated (�) with TPA were analysed by western blotting as shown in the left panel. The blots were
stained with the novel BALF5-specific antibody 4C12, an antibody directed against b-actin as a loading control and BZLF1-specific monoclonal
antibody BZ-1 to verify the induction of EBV lytic replication. Detection of BALF5 in EBV-infected 293 cells without (–) and after (+) induction of
lytic replication by BZLF1 using the vector p509 (18) is shown in the right panel. (B) Immunoprecipitation of BALF5. Extract of TPA-treated Raji
cells was incubated either with BALF5-specific antibody 4C12 or irrelevant isotype control as indicated. Immune complexes were collected using
protein G Sepharose (Amersham-Pharmacia). The precipitated BALF5 protein was analysed in a western blot using 4C12 as primary antibody;
bound antibody was visualized by the ECL method; the lanes designated ‘Raji’, shows whole-cell extract prior to precipitation. (C) Reduction of
BALF5 protein levels by miR-BART2. 293-EBV cells were transfected with BZLF1 expression vector p509 in combination with miR-BART2
expression vector or pSG5 control. BALF5 protein was stained using the monoclonal antibody 4C12, b-actin served as a loading control (left panel);
statistical analysis of the BALF5 protein reduction by miR-BART2. The amount of BALF5 protein with or without BART2 expression from three
independent assays as shown in (C) was determined and statistically analysed. The reduction of 30–40% after co-expression of miR-BART2 was
statistically significant (right panel; P=0.0037). (D) Reduction in virus load by miR-BART2. Viral replication in 293-EBV cells was induced by
expression of BZLF1 using the vector p509. The amount of virus released was determined by quantitative real-time PCR. The value obtained by
co-transfection of the empty control vector pSG5 was set to 100%. Co-expression of miR-BART2 resulted in a statistically significant reduction of
the virus load by 20% (P=0.039), co-expression of miR-155 resulted in a non-significant reduction by 5–10% (P=0.155).
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inhibition of the B95.8-specific miRNAs using 20-O-
methyl-antisense oligonucleotides. It is thus unclear
whether the miRNAs serve to actively inhibit lytic repli-
cation or whether they are present to inhibit aberrantly
expressed messages such as the BALF5 mRNAs.

DISCUSSION

A hallmark of the infection of Herpes viruses is the
persistence of the viruses in the infected host and it may be
speculated that the viral miRNAs function to establish
and maintain latency. The HSV-1 miRNA designated
miR-LAT is found in latently infected cells and represses
the TGF-b-mediated apoptosis after infection (30). In the
case of MHV-68, a deletion at the 50-end of the viral
genome including the miRNA genes resulted in a reduced
capacity for persistent infection (31). However, as the
deletion(s) also included protein-encoding genes, it is
unclear whether this effect is due to the loss of the
miRNA. Marek’s disease virus, an oncogenic Herpes virus
infecting chicken, encodes eight miRNAs expressed in
latently infected, transformed cells. Three of these
miRNAs are antisense to the immediate early gene ICP4
and probably down-modulate this gene product to inhibit
entry into the lytic cycle (32).
The data presented in this report indicate that at least

one of the EBV-encoded miRNAs might have a function
in the viral life cycle. Our results are compatible with the
notion that the miR-BART2 serves as an inhibitor of viral
DNA replication through degradation of the mRNA for
the viral DNA polymerase BALF5. MiR-BART2 is only
expressed at very low levels during latent infection and we
therefore assume that this particular miRNA serves to
inhibit aberrantly transcribed BALF5 mRNA to ensure
that the viral replication is not inadvertently induced.
Accordingly, we only observed a modest reduction of
virus production upon forced expression of miR-BART2.
We also noticed that the reduction of cleavage activity
after TPA-induction was much stronger than the reduc-
tion in miR-BART2 levels; it might be possible that
the virus employs additional factors that interfere with
Ago-2-mediated cleavage. In addition to miR-BART2,
we found that both the precursor and the mature
miR-BART1 were also down-regulated upon lytic cycle
induction. In conjunction with a previous report (16),
which shows that the mature EBV-encoded miR-BHRF1-
1 and -2 are down-regulated upon TPA induction of the
two EBV-infected BL cell lines Daudi and Mutu I, we
speculate that additional virus-encoded miRNAs may
play a role in repression of the lytic replication cycle.
We are presently analysing the possibility that the other
EBV–miRNAs target distinct viral or cellular genes
involved in regulation of viral replication.
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