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ABSTRACT

Mediator is the central coactivor complex required
for regulated transcription by RNA polymerase
(Pol) II. Mediator consists of 25 subunits arranged
in the head, middle, tail and kinase modules.
Structural and functional studies of Mediator are
limited by the availability of protocols for the prep-
aration of recombinant modules. Here, we describe
protocols for obtaining pure endogenous and
recombinant complete Mediator middle module
from Saccharomyces cerevisiae that consists of
seven subunits: Med1, 4, 7, 9, 10, 21 and 31. Native
mass spectrometry reveals that all subunits are
present in equimolar stoichiometry. Ion-mobility
mass spectrometry, limited proteolysis, light scat-
tering and small-angle X-ray scattering all indicate
a high degree of intrinsic flexibility and an elongated
shape of the middle module. Protein–protein inter-
action assays combined with previously published
data suggest that the Med7 and Med4 subunits
serve as a binding platform to form the three
heterodimeric subcomplexes, Med7N/21, Med7C/
31 and Med4/9. The subunits, Med1 and Med10,
which bridge to the Mediator tail module, bind to
both Med7 and Med4.

INTRODUCTION

Mediator is the essential coactivator complex required
for regulated transcription by eukaryotic RNA
polymerase (Pol) II (1–4). Saccharomyces cerevisiae
Mediator has a molecular weight of 1.4MDa and

consists of 25 polypeptide subunits (Figure 1). The single
subunits were assigned to four different structural
modules: the head, middle, tail and kinase modules (5,6).
Electron microscopic studies of Mediator across several
species [S. cerevisiae (5,7,8), Schizosaccharomyces pombe
(9), mouse (5) and human (10–12)] show a dynamic
arrangement of the modules. Detailed structural informa-
tion on some Mediator subunit domains, subunits and
subcomplexes, was obtained by X-ray crystallography
(13–16) and by nuclear magnetic resonance (NMR)
(17,18) (Figure 1B). In particular, structures of two
subcomplexes of the middle module are known: the
Med7N/31 (15) and the Med7C/21 (13) heterodimers
(Med7N and Med7C stand for the N- and C-terminal
regions of Med7). Many subunit interactions have been
mapped biochemically or by yeast two-hybrid analysis
(16,19–21).

Mediator modules and submodules serve specific and
overlapping functions in the regulation of subsets
of genes (15,22,23). The Mediator head and middle
modules together form a functional core (24), the
subunits of which are conserved throughout eukaryotes
(25–29). The detailed Mediator architecture and molecular
mechanisms, however, remain elusive, mainly because
structural information on the level of the modules is
lacking. Such information would clarify the relative orien-
tation of Mediator subunits within and between modules.
Structural studies of these two core modules, however,
require their preparation in large quantities and pure
form. Thus far, only the head module is available in
reconstituted form (20).

Here, we describe the purification of the complete
7-subunit middle module of Mediator from yeast, and as
a recombinant complex after heterologous subunit
coexpression in Escherichia coli. Pure middle module
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preparations were analyzed by various biophysical
methods to determine subunit stoichiometry and module
topology, and can be used for structural and functional
studies in the future.

MATERIALS AND METHODS

Purification of endogenous middle module

The med19� yeast strain (BY4741; MATa, his3�1,
leu2�0, met15�0, ura3�0, YBL093C::clonNAT) was
obtained from Stephan Jellbauer (Gene Center Munich)
and C-terminal TAP-tags were introduced on Med7,
Med15 or Med18, respectively, using a kanMX4-marker
by means of vector pYM13 (30). Yeast cultures were
cultivated and the protein complexes purified using
tandem affinity purification as described (15).

Preparation of recombinant middle module

Monocistronic vectors were cloned by standard proce-
dures. Bi- or tricistronic vectors were generally created
by introducing additional ribosomal binding sites by
means of PCR into pET- and pCDF-vectors (Novagen)
as described (13,16) and illustrated in Figure 2. A detailed
listing of all vectors used and created for this study can be
found in Supplementary Table S1. For expression, E. coli
BL21 (DE3) RIL cells (Stratagene) were transformed with
one to three plasmids and grown in LB medium at 37�C to
an optical density at 600 nm (OD600) of 0.6. Expression
was induced with 0.5mM IPTG for 16 h at 18�C. Cells
were lysed using a high-pressure homogenizer (Avestin)
(large-scale protein purification) or by sonication
(Branson) (small-scale purification).

The quaternary complex Med7/10/21/31-His6 was
expressed from two plasmids encoding Med10, Med7
and Med21 in a tricistronic pET21b vector (pSB104)

and Med31-His6 in a pET24d vector (pSB102). Four
liters of E. coli culture were harvested and lysed in
buffer A (50mM Tris pH8.0, 150mM NaCl, 10mM
b-mercaptoethanol) containing protease inhibitors. After
centrifugation, imidazole was added to a final concentra-
tion of 20mM to the supernatant and loaded onto a 3ml
Ni-NTA gravity flow column (Qiagen) equilibrated with
buffer A containing 20mM imidazole. The col-
umn was washed with 20 column volumes (CVs)
of buffer A containing 20mM imidazole and eluted with
buffer A containing 200mM imidazole. The 4-subunit
middle module was further purified by anion exchange
and gel filtration chromatography.
The Med4/9 complex was coexpressed from

a bicistronic pET21 vector (pSB118) using 2 l of E. coli
culture. Cells were harvested and lysed in buffer B (20mM
Tris pH8.0, 150mM NaCl, 10mM b-mercaptoethanol)
containing protease inhibitors. Insoluble cell debris were
removed by centrifugation and the proteins purified by
ammonium sulfate precipitation and anion exchange
chromatography. Ammonium sulfate precipitation was
achieved by the gradual addition of saturated (20�C)
ammonium sulfate solution up to 30% (v/v). After
centrifugation, the pellet was resuspended and purified
on a MonoQ10/100 column (GE Healthcare) in
buffer C (50mM Tris pH 8.0, 100mM NaCl, 10mM
b-mercaptoethanol) using a linear gradient of 20 column
volumes (CVs) from 100mM to 1M NaCl. A six-subunit
middle module comprising Med4/7/9/10/21/31 was
obtained by assembling the two purified subcomplexes.
Assembly was performed at 20�C on a rotating wheel
with a 1.3 molar excess of Med4/9. Contaminants,
excess Med4/9 and unassembled 4-subunit middle
module were separated using anion exchange chromatog-
raphy (buffer C, 20CV from 100mM to 1M NaCl).
Following concentration in a 100 kDa MWCO spin

Figure 1. Endogenous Mediator and its middle module. (A) Schematic view of Mediator subunit arrangement and modular structure, taking into
account known and found (see below) subunit interactions. Subunits that are essential for yeast viability are outlined in yellow. (B) Available detailed
structural information on subunits and subcomplexes of Mediator (13–17). Structures are enlarged in proportion to the full subcomplex or subunit
sizes. (C) SDS-PAGE analysis of endogenous Mediator and 7-subunit Mediator middle module purified from wild-type (left) and med19� yeast
strains containing a C-terminal TAP tag on the Med7 subunit. Copurifying proteins from 4 l yeast cells were separated on a 12% NuPAGE gel
(Invitrogen), and bands were stained with Coomassie blue. The identity of all Mediator subunits could be confirmed by mass spectrometry (data not
shown).
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concentrator (Amicon Ultra, Millipore), the 6-subunit
middle module was purified to homogeneity by gel
filtration chromatography using a Superose 6 size exclu-
sion column (GE Healthcare) with buffer A.
The complete middle module comprising Med1/4/7/9/

10/21/31 was expressed from the cotransformed vectors
pSB104 (encoding Med10, Med7 and Med21), pTK26
(encoding His6-Med31) and pTK114 (encoding StrepII-
tagged Med1, Med9 and Med4). After cotransformation
of two vectors, cells were made competent again in
order to transform the third vector. Six liters of E. coli
culture were harvested and lysed in buffer D [50mM
Tris pH 8.0, 150mM NaCl, 10% (v/v) glycerol, 10mM

b-mercaptoethanol] containing protease inhibitors. After
centrifugation, the complex was purified on 3� 1ml
Strep�Tactin MacroPrep (IBA) gravity flow columns
according to the manufacturer’s instructions. Following
elution by d�Desthiobiotin (IBA) addition, the sample
was concentrated in a 100-kDa MWCO spin concentrator
and subjected to gel filtration using a Superose
6 size-exclusion column (GE Healthcare) with buffer A.

Native mass spectrometry

The buffer exchange for the native MS analysis was per-
formed using 10 kDa cut-off membrane spin columns
(Millipore, England) by six sequential concentration/

Figure 2. Recombinant Mediator middle module. (A) Recombinant coexpression of multisubunit protein complexes in E. coli is possible by using
multicistronic expression vectors, several compatible vectors cotransformed into E. coli, vectors with several promoters, and combinations of these.
(B) Coexpression of 4-subunit Mediator middle complex containing Med7/10/21/31 is accomplished using a tricistronic pET21 and a monocistronic
pET24 vector. The dimeric Med4/9 complex is coexpressed using a bicistronic pET21 vector. After cell-disruption and prepurification, both
complexes are assembled into the 6-subunit middle complex containing Med4/7/9/10/21/31 and purified further to homogeneity. (C) Recombinant
7-subunit middle module consisting of Med1/4/7/9/10/21/31 is obtained by coexpression using a tricistronic vector encoding for Med7/10/21, a
monocistronic vector encoding for His6-Med31 and a pCDFDuet vector with StrepII-tagged Med1 from multiple cloning site I (MCS I) and Med4/9
bicistronically expressed from MCS II. Purification after cell disruption is performed by StrepII-affinity purification and subsequent gel filtration.
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dilution cycles against 200mM ammonium acetate pH 6.8.
The concentration for the analysis was 5 mM (assuming
intact protein complexes). Analysis of the intact protein
complex, as well as the n-propanol and DMSO measure-
ments were carried out on a LCT mass spectrometer
(Waters, UK). Needle voltage was set to 1250V, cone
voltage varied between 100 and 150V. Tandem mass
spectrometry was performed on a modified Q-ToF; here,
needle voltage was set to 1300V and cone to 150V. For
further details see ref. 31 and references within. Ion
mobility mass spectrometry (IM-MS) was carried out on
a Synapt HDMS (Waters, UK) (32). The source pressure
was set to 6.9mbar, the pressure in the trap was
3.5� 10�2mbar, 0.7mbar in the ion mobility separation
(IMS) cell and 2� 10�6mbar in the ToF. The wave height
in the IMS cell was fixed on 11.3V and the wave velocity
set to 250m/s. The gas used in the trap was xenon and
nitrogen in the IMS cell. Needle voltage was 1200V
and cone voltage 150V. The bias value was set to 20V,
trap and transfer collision energy to 12V. Cross-section
calculations were done as described by ref. 33. The average
volume of global proteins and protein complexes was
calculated according to ref. 34.

Limited proteolysis analyses

Limited proteolysis time courses were performed to
identify durations suitable for obtaining medium-size frag-
ments. Digests were performed using 20–50 mg protein
complex with 0.2 mg of chymotrypsin (Sigma C3142) in
buffer A supplemented with 4 mM CaCl2 by incubation
at 37�C for 1–60min. The reactions were stopped by the
addition of SDS sample buffer and were heated immedi-
ately to 95�C for 10min. For experiments depicted in
Figure 4, purified 3-, 4- and 6-subunit middle module
complexes were subjected to limited proteolysis for
10min using chymotrypsin and after stopping the
reaction by addition of a protease inhibitor mixture,
loaded onto a Superose 6 gel filtration column (GE
Healthcare). For proteolysis, 1 mg of sample was used
for 3- and 4-subunit, and 2 mg for the 6-subunit middle
module. Bands of interest in individual peaks were
analyzed on SDS-PAGE after TCA precipitation by MS
and Edman-sequencing with a Procise 491 sequencer
(Applied Biosystems) following transfer to PVDF
membranes.

Coexpression and copurification pull-down assays

Coexpression was performed as described above using
50ml cultures for StrepII-affinity purifications or 7ml
cultures for Ni-NTA purifications. Cell lysates were
clarified by centrifugation and copurification pull-down
assays performed in batch. StrepII-affinity purifications
were performed using 25 ml of Strep�Tactin MacroPrep
(IBA). The clarified lysates were incubated with the beads
at 4�C on a rotating wheel for 1 h. Beads were
washed with 3� 1ml of buffer A and the samples eluted
by d-Desthiobiotin. Ni-NTA purifications were performed
using 40 ml of MagneHis beads (Promega). The clarified
lysates were incubated with the beads at 4�C on a rotating
wheel for 15min. Beads were washed with 2� 1ml of

buffer A and the samples eluted by 400mM Imidazole in
buffer A. Samples were analyzed on SDS-PAGE.

Small-angle X-ray scattering

Small-angle X-ray scattering (SAXS) data were
collected at the X33-Beamline (EMBL/DESY, Hamburg,
Germany). Scattering patterns from 6-subunit Mediator
middle module solutions comprising Med4/7/9/10/21/31
were measured in buffer A at 5mg/ml two times in order
to exclude potential radiation damage errors. The ATSAS
software package (35) was used for data processing.

RESULTS

Endogenous Mediator middle module

It was previously reported that the middle module is lost
from Mediator that is purified from a med19� strain
under stringent conditions (36). To purify middle
module from a med19� strain, we introduced a
C-terminal tandem affinity purification (TAP) tag on the
middle module subunit Med7. TAP purification resulted
in pure middle module without the need for the previously
used urea dissociation (36), indicating that the tag further
destabilizes the Mediator. Fusing a TAP-tag with Med15
or Med18 did not lead to purification of individual parts
of Mediator (Supplementary Figure S1). The high yield
and purity of the preparation from the med19�/
MED7-TAP strain (Figure 1C) enabled us to determine
unambiguously by MS (see ‘Materials and Methods’
section) that the endogenous yeast Mediator middle
module comprises the subunits Med1, Med4, Med7,
Med9 (Cse2), Med10 (Nut2), Med21 (Srb7) and Med31
(Soh1), consistent with previous description (19,21,27,37).

Recombinant middle module

We previously used heterologous coexpression of physi-
cally associated Mediator subunits in E. coli to obtain
milligram quantities of Mediator subcomplexes of up to
three subunits (13,15,16). Here, based on commercial
pET- and Duet vectors (Novagen), we created poly-
cistronic expression constructs with additional ribosomal
binding sites between middle module subunit open reading
frames (Figure 2). For expression of a 4-subunit complex
comprising Med7, 10, 21 and 31, we constructed a
tricistronic pET21b vector encoding Med10, 7 and
21 (Figure 2B) and a pET24d vector encoding C-
terminally hexahistidine-tagged Med31. These vectors
were cotransformed into E. coli BL21(DE3) RIL cells
(Stratagene) and after coexpression, the 4-subunit
complex could be purified (Figure 2B, ‘Materials and
Methods’ section). To obtain a 6-subunit complex that
comprised also subunits Med4 and Med9, these two
subunits were coexpressed separately using a bicistronic
pET21b vector. A partially purified Med4/9 heterodimer
was assembled with the pure 4-subunit complex and the
resulting 6-subunit complex was purified to homogeneity.
To obtain complete 7-subunit middle module, three
vectors were cotransformed into E. coli BL21(DE3) RIL
cells, the tricistronic vector encoding Med10, 7 and 21, a
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vector encoding N-terminally hexahistidine-tagged
Med31, and a vector encoding Med4, Med9 and N-
terminally StrepII-tagged Med1 (Figure 2C, ‘Materials
and Methods’ section). After coexpression of the seven
proteins from these three vectors, the 7-subunit module
was purified in two steps, including a StrepII-affinity
step (Figure 2C, ‘Materials and Methods’ section).

Subunit stoichiometry

To investigate the subunit stoichiometry in the
recombinant middle module and its subcomplexes, we
used native MS that allows determination of molecular
weights of entire protein complexes (38,39). The detected
masses were 191 650±60Da for the complete 7-subunit
middle module (191 335Da expected), 124 760±50Da
for the 6-subunit complex (124 471Da expected) and
75 840±30Da for the 4-subunit complex (75 620Da
expected) (Figure 3 and Supplementary Figure S2A). We
calculated expected masses taking into account that the
N-terminal methionines of Med4, 7, 10, 21 and 31 were
lacking (Edman sequencing data, not shown). The slightly
higher experimental masses can be explained by incom-
plete desolvation of the complexes (40). The MS analysis
also revealed that the 4- and 6-subunit complexes tend to
dimerize. This is likely due to exposed hydrophobic
surfaces, since addition of DMSO eliminated the dimers
from the recorded MS spectra (Supplementary Figure
S2B). These results reveal that only a single copy of each
subunit is present in the complexes and establish the
equimolar subunit stoichiometry of the middle module.

Module topology

We next investigated the topology of the middle module
by MS analysis. We observed spontaneous dissociation of
subunits and subcomplexes in the buffer used for the
native MS experiments. This effect could be enhanced by
addition of DMSO or n-propanol (Supplementary Figure

S2). Dissociation of the 7-subunit module revealed that
Med1 could detach from the module separately, to result
in the 6-subunit complex. Dissociation of the 6-subunit
complex revealed a dimer of Med4/9, confirming the inter-
action between those two subunits. Dissociation of the
4-subunit complex resulted in the trimers Med7/10/31
and Med7/21/31, and in the dimers Med7/31 and
Med7/21.Overall, Med7 never dissociated from the
middle module, showing it is an architectural subunit,
whereas Med9 and Med10 were least stably attached. To
further analyze the module topology, we investigated frag-
mentation of the 4-, 6- and 7-subunit complexes by
tandem MS. Generally consistent with solution dissocia-
tion experiments, Med9 and Med10 readily dissociated
from the complexes, whereas Med7 never did, except to
a low extent when the complete middle module was used.
Taken together, the dissociation and fragmentation exper-
iments are consistent with earlier structural and interac-
tion analysis of the middle module and the existence of
heterodimers Med7N/31, Med7C/21 and Med4/9 within
intact middle module (13,15,19).

Exposed regions

To detect exposed and flexible protein regions, middle
module complexes were subjected to limited proteolysis
using chymotrypsin (see ‘Materials and Methods’
section). In an attempt to separate stable fragments, we
stopped proteolysis by addition of protease inhibitor
at certain time points, and subjected the samples to
gel filtration. Peak fractions were TCA-precipitated
and analyzed by SDS-PAGE and Edman sequencing
(Figure 4). This approach could identify stable
subcomplexes suitable for crystallization, such as
Med7N/31 and Med7C/21, which result from proteolysis
of a Med7/21/31 trimer (Figure 4A) (13,15).

Limited proteolysis of the 4-subunit complex revealed
not only protease cleavage within regions predicted to
form flexible loops, but also cleavage in some helical
regions of Med21 (known structure) and Med10 (pre-
dicted) (Figure 4B, and C). Two subcomplexes were
detected based on Med7N/31 and Med7C/21 that both
contain N-terminally truncated Med10 (Figure 4C).
Proteolysis of the 6-subunit complex also revealed
Med7C/21 and Med7N/31 in different gel filtration frac-
tions, but now associated with different truncated variants
of Med10 (Figure 4D). Consistently, native MS analysis of
an early 7-subunit complex preparation revealed an intact
middle module with a truncated form of Med10 that
lacked 66N-terminal residues (data not shown). Med9
showed only one chymotrypsin cleavage site and was
detected either as full-length subunit (star in Figure 4D)
or as an N-terminally shortened variant (star and triangle
peak in Figure 4D). Med4 was cleaved at multiple sites,
but preferentially from the C-terminus.

This analysis supports a submodular architecture of the
middle module based on the Med7N/31 and Med7C/21
core subcomplexes connected via a flexible Med7 linker.
Med4, 9 and 10 are associated with both core
subcomplexes, but their proteolytic fragments were not
sufficient to hold these subcomplexes together. The

Figure 3. Native mass spectrometry analyses of Mediator middle
module. Shown are from top to bottom spectra of the 7-, 6- and
4-subunit middle module complexes. All individual subunits are
present in equimolar stoichiometry. The distributions are labeled
accordingly to the corresponding schematics.
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Figure 4. Limited proteolysis analysis of Mediator middle module. (A) Recombinant complexes were subjected to limited proteolysis by
chymotrypsin after identifying suitable digestion durations using time courses. The samples were subjected to gel filtration, the eluting peaks
precipitated by TCA, fractions separated on SDS-PAGE and subjected to Edman sequencing. (B) Secondary structure predictions for yeast
middle module subunits. Multiple sequence alignments were used whenever possible. Given are consensus predictions by HHpred (45), I-Tasser
(46), PSIpred (47) and CDM (48). (C) Schematic diagram of limited proteolysis of Med7/10/21/31 using chymotrypsin, analogous to (A). The
chromatogram of undigested complex is indicated by the black curve. Proteolytic cleavage sites are indicated above the protein cleavage schemes in
dark blue (sequenced) and light blue (estimated from SDS-PAGE). Ambiguous C-terminal sites are marked with a tilde. In cases in which more than
one N-terminus was sequenced, the alternative N-terminal cleavage sites are marked additionally. (D) Schematic diagram of limited proteolysis
results for the Med4/7/9/10/21/31 complex using chymotrypsin, analogous to (C).
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C-terminal region of Med4, the N-terminal region of
Med9, and the N-terminal region of Med10 are not
stably bound to the core subcomplexes and may
be involved in contacts with other Mediator modules
or external factors. Consistently, yeast complementation
assays revealed that the flexible Med4 C-terminal residues
194–250 are required for viability, whereas the N-terminal
residues 1–66 are not (Supplementary Figure S3).

Intra-module subunit interactions

To further elucidate the subunit interactions within
the middle module, we used coexpression pull-down
experiments (Figure 5A and Supplementary Table S2).
Our biochemical analysis generally confirmed previous
subunit interactions based on yeast two hybrid (Y2H)
assays and immunoprecipitation (19), but additionally
allowed us to distinguish weak and strong subunit inter-
actions, and to detect interaction domain boundaries
(Figure 5B and C). Important findings from this analysis
were the following. First, Med7N/31 neither bound
Med7C/21 nor Med4/9. For interaction of Med4/9 to
any Med7-containing complex, the Med7 linker between
Med7N and Med7C was required. Second, the Med4/9

heterodimer binds to Med1. Med4/9 heterodimer forma-
tion neither required the 18N-terminal residues of Med4
nor the predicted loop in Med9 comprising residues 19–63,
consistent with the prior observation that Med9 contains
two domains (compare 41). Third, Med10 and Med4
interacted weakly and Med21 stabilized this interaction.
The C-terminal part of Med10 was sufficient for binding
the Med7C/21 subcomplex. Med10 was also found to
stably bind to Med14, confirming previous data (19) and
showing that Med14 (1-259) is sufficient to establish a
connection of middle module towards Mediator tail
module. Finally, reported Y2H interactions between
Med21 and Med31 were not confirmed. Stable expression
of Med9 always required coexpression with Med4, but was
not possible with Med1 or Med7, suggesting that Med9
has no direct interaction with these. Together with pub-
lished data, this analysis establishes the middle module
subunit interaction network (Figure 5C).

Module shape

To investigate the overall shape of the middle module in
solution we used light scattering and SAXS. Static light
scattering analysis of the 6-subunit complex revealed a

Figure 5. Intra-module subunit interactions within the middle module. (A) Middle module subunits and subcomplexes were tested for interaction
with other middle module subunits or subcomplexes by coexpression and subsequent copurification pull-down assays. (B) Mediator middle module
interaction map based on previously published (19) yeast-two-hybrid (Y2H) assays and structural data (13,15). The length of truncated subunit
variants that gave interactions with its partner, are indicated closely to the molecules. Interactions based only on single Y2H clones are indicated by a
star. (C) Mediator middle module interaction map based on coexpression and copurifications. The map integrates published data (13,15) with the
findings depicted in Figures 2B, C, 5A and Supplementary Table S2. As coexpression and copurification was required to obtain stable complexes,
connections to more than one partner are indicated for some proteins. Weak interactions are indicated by a star.
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hydrodynamic radius of 66 Å, 34% larger than that of
Med7C/21, which exists as a heterotetramer in solution
(compare Supplementary Table S3). SAXS analysis
showed that the 6-subunit middle module was partially
aggregated at the high concentrations required for the
analysis (Figure 6A and Supplementary Table S3). Thus,
we could not reliably determine the radius of gyration and
could not calculate low-resolution structural models.
Nevertheless, the scattering curve shows clearly that the
middle module exhibits an elongated shape (compare 42,
Figure 1, e.g. model body 10). The Kratky-plot further
indicates that the protein complex is folded and consists
of a few globular areas (Figure 6B). Unfortunately,
analysis of the 7-subunit middle module by SAXS was

hampered by susceptibility of the Med1 subunit to degra-
dation and difficulties in complex concentration.
To add support to the results obtained in solution,

we used ion mobility (IM) MS analysis. IM-MS can
provide the collisional cross section (CCS), which corre-
sponds to an averaged lateral cut through the protein (43).
We applied IM-MS to the three recombinant
Mediator middle module complexes (Figure 6C and
Supplementary Table S4). Calculation of calibrated CCS
revealed conformational flexibility in all complexes, con-
sistent with our inability to crystallize any of these
complexes and published in silico analysis data (44). This
becomes more clear even when looking at an averaged
drift time analysis (Figure 6D and Supplementary Figure

Figure 6. Shape of the middle module. (A) The experimental SAXS curve of 6-subunit Mediator middle module indicates an elongated protein
complex. I0 signal intensity in comparison with the BSA standard measurement suggested a molecular weight of the complex far above the theoretical
weight. Therefore, the Guinier radius could not be reliably determined and useful models could not be calculated. (B) The corresponding Kratky-plot
shows no classical bell shape, but is stretched toward higher scattering angles. The complex is nevertheless folded and exhibits also few globular
areas. (C) Ion mobility MS experiments. Plotted are the calibrated collision cross sections (CCSs) of the single subunits and (sub-)complexes (for
detailed information see Supplementary Table S4). The graph indicates a general trend of CCS versus mass for globular proteins [determined both
experimentally (34) and derived from globular structures deposited in the PDB http://www.rcsb.org]. The graph extends up to a mass of 801 kDa and
a CCS of 229 nm2. Only the section relevant for the Mediator complexes is shown. The color-coding is: grey: Med21, cyan: Med9, orange: Med10,
brown: Med4, dark green: Med4/7, dark blue: Med1, blue: 4-subunit middle, red: 6-subunit middle, purple: 7-subunit middle. (D) Flexibility of the
Mediator middle module. From IM-MS measurements, we generated the averaged drift time plot (in ms) for the 4-subunit Mediator middle (charge
16+) (shown in black). Using the Drift Scope software (Waters, UK), we extracted the different conformations that contribute to the averaged drift
time plot. We can detect up to six conformations that make up this charge state of the 4-subunit Mediator middle in the gas phase, thereby reflecting
the flexibility of the Mediator middle module.
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S2C). Compared to standard proteins of similar mass (34),
the most abundant conformations for the 4- and 6-subunit
complexes represented extended structures. The confor-
mation of the complete 7-subunit middle module was,
however, more compact (Figure 6C). The average
calculated densities for the 4-, 6- and 7-subunit complexes
were 0.48, 0.50 and 0.56 g/cm3 respectively. Thus, three
different experimental methods are consistent with an
elongated shape of the middle module, which is further
consistent with published cryo-electron microscopic data
(7,9,10).

DISCUSSION

Understanding the Mediator complex on a molecular level
requires a detailed analysis of its four multisubunit
modules, for which no structures are available. Here, we
first confirmed the subunit composition of the complete
endogenous S. cerevisiae middle module after its purifica-
tion from a med19� strain of yeast. We then established a
protocol for the expression and purification of the
complete 7-subunit middle module and its 4- and
6-subunit subcomplexes. We have used the defined
middle complex preparations in various biophysical
assays to determine the subunit stoichiometry,
subunit interactions and the elongated shape of the
complex.
Light and X-ray scattering as well as IM-MS suggest

that the 6-subunit middle module has an elongated shape,
whereas the complete 7-subunit middle module is more
compact. As revealed by interaction experiments, Med7
and Med4 subunits interact via the linker between
Med7N and Med7C. Our proteolysis, interaction experi-
ments, and MS data all suggest that they serve as a
binding platform to form three stable heterodimers,
Med7N/31, Med7C/21 and Med4/9. Med1 and Med10
both bridge between the heterodimers Med7C/21 and
Med4/9. These middle module subcomplexes are appar-
ently connected in a flexible manner. The Med4
C-terminus and the Med10 N-terminus are flexible and
exposed, with the latter involved in binding Med14.
These intrinsic flexibilities have thus far impeded crystal-
lization of the middle module. Our interaction data not
only validate most subunit contacts mapped by yeast-two
hybrid analysis (19) but also identify a few false positives
and reveal new details about subunit interactions.
In order to understand how Mediator integrates regu-

latory signals and how it enables activated transcription,
future work will require elucidating the activity of the
essential Mediator middle module and its parts. Despite
extensive efforts, we were however unable to test the
functionality of the middle module in vitro. Establishing
an in vitro assay for middle module-dependent activated
transcription will thus remain a future goal. In addition,
the results presented here form the basis for future struc-
tural studies. The coexpression strategies established here
may also be valuable for the preparation of other large
and flexible multiprotein complexes by coexpression in
E. coli.
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