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                    Abstract

The relationship between information and energy is key to understanding
                    biological systems. We can display the information in DNA sequences specifically
                    bound by proteins by using sequence logos, and we can measure the corresponding
                    binding energy. These can be compared by noting that one of the forms of the
                    second law of thermodynamics defines the minimum energy dissipation required to
                    gain one bit of information. Under the isothermal conditions that molecular
                    machines function this is Emin = Kb T ln 2 joules
                    per bit Kb is Boltzmann's constant and T is the absolute temperature). Then an efficiency of
                    binding can be computed by dividing the information in a logo by the free energy
                    of binding after it has been converted to bits. The isothermal efficiencies of
                    not only genetic control systems, but also visual pigments are near 70%. From
                    information and coding theory, the theoretical efficiency limit for bistate
                    molecular machines is ln 2 = 0.6931. Evolutionary convergence to maximum
                    efficiency is limited by the constraint that molecular states must be distinct
                    from each other. The result indicates that natural molecular machines operate
                    close to their information processing maximum (the channel capacity), and
                    implies that nanotechnology can attain this goal.
                    

                    INTRODUCTION

                    Measuring information and energy in biological systems

To address the relationship between information and energy in biological systems
                    requires first being able to measure each one. Standard methods for measuring
                    the energy dissipation of molecular interactions are well established (1,2),
                    but the corresponding measure of information (3) is rarely determined. To make a measure of information that can
                    be compared to an energy difference, that measure must express a state change
                    corresponding to the binding interaction. The easiest systems to work with are
                    DNA binding proteins since the patterns to which they bind can be readily
                    determined by sequencing technologies, and from these data one can compute the
                    information gained in the process (3). The
                    state change that can be measured for both information and energy is between the
                    molecule being anywhere on the DNA (but already non-specifically bound to the
                    DNA, the before state), and molecules bound to specific
                    functional sites (the after state). To make a comparison, not
                    only must the state changes be the same but also the number of molecules
                    involved must be equivalent. In this paper measurements for both energy and
                    information are reported on a per-molecule basis.
                    Information is displayed by sequence logos

For the information measure, sequence logos are a widely used graphical
                    representation of aligned biological sequences such as DNA or RNA binding sites
                    or protein motifs (4,5). In a conventional logo, the symbols of the polymer
                    alphabet are stacked one on top of another, with their heights made proportional
                    to their frequency at that position. The symbols are sorted by frequency so that
                    the most common letter is on top. The utility of logos is that the sequence
                    conservation is indicated by scaling the entire stack of letters to represent
                    the information at that position in the binding site. For example, because of
                    the structure of DNA, protein contacts into the major groove can be fully
                    conserved at 2 bits of information but the minor groove has half the maximum
                    sequence conservation (6) and so cannot
                    exceed 1 bit of information. Many logos show this effect (7,8). However, the
                    sequence logo for bacteriophage P1 RepA binding sites (Figure 1) has, between two well conserved major groove
                    contact regions (0 to +3 and +11 to +13), a striking anomaly in the minor groove
                    at +7 where conservation is near 2 bits (7,9). Similar anomalies are
                    observed in other proteins that bind DNA replication origins (8,10)
                    and these imply that the DNA is not B-form. Indeed, further experimental work
                    revealed that after binding to a DNA replication origin, RepA probably flips the
                    conserved T out of the helix to initiate DNA replication (11). In information theory, as with any other
                    well-established theory, anomalies can lead to new biological understanding. 
                    
Figure 1.
Open in new tabDownload slide

Sequence logo for RepA binding sites from bacteriophage P1 (GenBank
                            Accession K02380.1). The height of each letter is proportional to the
                            corresponding base frequency at that position in the binding sites. The
                            height of the entire stack is the sequence conservation in bits (with
                            error from the small sample size shown) (12–14). This often varies
                            according to a sine wave. Where the DNA faces the binding protein the
                            information can be up to 2 bits (fully conserved, closed triangles),
                            while in the minor groove not more than 1 bit can be conserved in B-form
                            DNA (open triangles). The variation between these two because of the
                            twist of the DNA helix is shown by the sine wave (7,8).
                            Comparing the logo to the sine wave, anomalous positions having more
                            than 1 bit in the minor groove are revealed to be in positions +7 and +8
                            (blue box), suggesting that the sites are not B-form DNA when bound by
                            RepA.


The vertical scale of a sequence logo is given in bits of information. A bit is
                    the amount of information needed to choose between two equally likely
                    possibilities. In the case of nucleic acids, there are four possible bases.
                    These can be arranged into two sets, for example the purines (A and G) and the
                    pyrimidines (C and T). One bit of information is sufficient to choose between
                    the purines and pyrimidines and a second bit of information distinguishes the
                    exact base. Thus sequence logos for binding sites have a scale from 0 to 2
                    bits.
                    Comparing information to binding energy

Sequence logos provide a precise, quantitative measurement of the information in
                    binding sites. How is this related to the binding energy? Previous work (15,16) assumed that the binding energy determines the sequence
                    conservation in a one-to-one function so that for each binding site there would
                    be only one energy that is proportional to one number of bits. However, a
                    protein could evolve to bind to the same sequence with either more or less
                    energy, just as a coin flipped to different heights still supplies no more than
                    1 bit of information, so the relationship between information and energy is an
                    inequality. The lower bound of energy dissipation can be determined from the
                    second law of thermodynamics to be  joules
                    per bit where  is Boltzmann's constant and T is the absolute temperature (17–19). In this paper we
                    recognize that this second law relationship can be used as an ideal conversion
                    factor to express binding energy dissipation as the maximum number of bits that
                    could be gained. By comparing this potential maximum bits to the actual
                    information observed in a logo, we form an efficiency. However, it is important
                    to clarify the relationship between this new thermodynamic definition of
                    efficiency and the previously defined thermodynamic efficiency.
                    Classical thermodynamic efficiency

In an automobile, burning fuel expands to drive the engine. Because it operates
                    between two temperatures Thot and Tcold such a heat engine has
                    the classical Carnot efficiency of 


(1)
 (20,21). Jaynes noted that
                    when one uses the Carnot formula for a biological system having 70% efficiency,
                    one gets an anomalous result: at the temperature of a warm day, Tcold = 300 K, and equation
                        (1) gives Thot = 1000 K, which would
                    burn tissue (22). This absurd result
                    indicates that this thermodynamic formula does not apply to most biological
                    systems since molecules inside cells function at a single temperature (22,23). For example, in the retina of the eye the protein rhodopsin
                    detects light (24). Thermal equilibrium
                    is attained within picoseconds after rhodopsin absorbs a photon (25,26). Likewise, a DNA binding protein such as the restriction enzyme
                    EcoRI, when bound nonspecifically to DNA, rapidly comes to local equilibrium
                    with the surrounding solution (21). Once
                    EcoRI has moved by Brownian motion to its specific binding sequence,
                    5′-GAATTC-3′, it binds and releases heat. The heat dissipates, leaving the DNA
                    and protein again at local equilibrium. Since the final temperature is the same
                    as the initial temperature, the Carnot efficiency is zero. Hence it cannot be
                    used in molecular biology.
                    Communications efficiency

Yet a precisely defined, practical measure of efficiency is essential to
                    characterize and understand biological processes. In this paper we show how an
                    efficiency derived from both the second law of thermodynamics and information
                    theory can be applied to isothermal biological processes. The key pieces of
                    information theory needed to do this were published by Claude Shannon in 1948
                        (12) and 1949 (27). Then, in 1959 Pierce and Cutler used information
                    theory to define an efficiency measure for satellite communications (28,29), 


(2)
 where P/N is the `signal-to-noise ratio',
                    the power P dissipated at the receiver in joules per second,
                    versus the thermal noise power N interfering with the signal
                    there. This formula was derived from Claude Shannon's famous channel capacity
                    equation, 


(3)
 in which
                    the bandwidth W defines the range of frequencies used in the
                    communications as, for example, by a radio station (12,13,27). The channel capacity theorem states
                    that as long as the data rate R (also in bits per second) is
                    less than or equal to the channel capacity C, communication can
                    be established with as few errors as desired. To reach this ideal requires that
                    the messages be coded to protect them against noise. For example, Morse code can
                    replace verbal communications in noisy situations. Likewise, the 8th bit of an
                    ASCII computer character (byte) (30),
                    which is known as a `parity bit', can be set so that the total number of 1's is
                    even. If an odd number of 1's is received, an error is detected. Sixty years of
                    developing sophisticated codes and computer chips to implement them has led to
                    reliable modern communications, including cell phones, the internet and
                    interplanetary data transmissions. In this paper we demonstrate the application
                    of information theory to an equally broad range of molecular machines.
                    Molecular machine capacity

We have previously shown that a formula equivalent to the channel capacity,
                    equation (3), can be developed for
                    molecular machine states: 


(4)
 where dspace is the number of independent parts of the molecular machine (23), Py is the energy
                    dissipation from the machine per operation and Ny is the thermal noise
                    power interfering with the machine during an operation. The subscript y indicates that the coding space is for mechanical
                    potentials instead of voltage potentials. That is, the model is for a physical
                    object such as a weight on a spring instead of an electrical oscillator built
                    from capacitors and inductors (31).
The units in equation (4) are `bits per
                    operation', in which an `operation' is, for example, moving from nonspecific to
                    specific DNA binding by EcoRI so operations in equation (4) replace seconds in equation (3). Both capacity equations only apply to living things
                    because the key concept used to derive them is that messages and molecular
                    states can be distinct (32). This
                    additional constraint does not derive from physics or thermodynamics; having
                    discrete molecular states is a biological criterion imposed by natural
                    selection.
Rhodopsin, for example, has two biologically important physical states: not
                    having seen a photon and having seen one. If these states were not stable and
                    distinct, the molecule would rapidly switch between them because of thermal
                    impacts, giving an animal the impression that there is light when in the dark.
                    These animals will be eliminated by natural selection, leaving only those who
                    have evolved sufficiently distinct states. Likewise, if EcoRI in the bacterium Escherichia coli were to bind to incorrect positions on the
                    DNA other than GAATTC, the genomic DNA would be destroyed because only that
                    sequence is protected from EcoRI digestion by the corresponding DNA methylase
                        (33). The extreme precision of
                    restriction enzymes (34–38) and the thermal stability of rhodopsin (39) are well known but the underlying
                    fundamental reason has not been widely appreciated. Shannon's channel capacity
                    theorem, as applied to molecules (23),
                    guarantees that by appropriate coding it is possible for a molecular machine to
                    evolve distinct states, and once it has done so, it can operate at its capacity
                    with as few errors as is necessary for survival. It is important to note that
                    the channel capacity is an ideal upper bound that cannot be exceeded because
                    thermal noise cannot be avoided by molecules. However, unless there are
                    additional constraints, we might anticipate that biological systems can evolve
                    to this limit.
                    RESULTS AND DISCUSSION

                    Molecular machine isothermal efficiency

Since the capacity equation and theorem can be extended from communications
                    systems to states of molecules (23), the
                    efficiency can also be extended, and the resulting formula is equivalent to
                    Equation (2). The derivation is as
                    follows. Consider a coin. Neglecting the unstable condition of balancing on the
                    edge, a coin can have two states, heads up and tails up. When a coin has kinetic
                    energy it rapidly switches between these states as when, for example, it bounces
                    around in a box. For the coin to settle down to one state or the other, it must
                    dissipate energy to the surroundings. The minimum energy dissipation, derived
                    from the channel capacity or the second law of thermodynamics (with the
                    constraint that the temperature is constant) (17,18), is 


(5)
 where  is Boltzmann's constant (joules
                    per kelvin), T is the absolute temperature (kelvin) and ln2
                    gives the units of `per bit'. Obviously a coin will dissipate much more energy
                    than this minimum because it is an inefficient macroscopic device. How much more
                    can be defined by the relationship between the dissipated energy Py and the information Cy: 


(6)
 In the limit as , , so  (18).
The efficiency of the coin or molecular machine is then defined as the minimum
                    possible energy dissipation divided by the actual dissipation [using  (18)]: 


(7)
 Notably, the isothermal efficiency is exclusively a
                    function of the power-to-noise ratio, Py/Ny.
                    Using the channel capacity theorem, it can be shown that the efficiency of a
                    real measurable system, ϵr, cannot exceed the
                    theoretical limit defined by ϵt, as shown in Figure 2. Both the Carnot efficiency
                    [equation (1)] and the efficiency
                    developed here [equation (7)] are derived
                    using the second law of thermodynamics (22), but only the latter applies to isothermal processes. 
                    
Figure 2.
Open in new tabDownload slide

Efficiency curve for isothermal molecular machines. .


                    Computations of the isothermal efficiency

We now show how to apply this theory to biological processes, using EcoRI as an
                    example. This molecule precisely selects GAATTC from all possible hexamers on
                    DNA. To choose a single base, such as the first G, requires 2 bits (3,13). For example, one may ask “Is it a purine (A or G)?” (a single bit
                    will answer this question) and “Is it in the set A or T?” (a second one-bit
                    answer). Because bits are additive (12)
                    the total information needed to specify GAATTC is 6 × 2=12 bits and EcoRI
                    `gains' 12 bits when it binds by reducing its positional entropy along the DNA
                    string by that amount (3,40). This can be displayed graphically with
                    a sequence logo, as shown in Figure 3. 
                    
Figure 3.
Open in new tabDownload slide

Sequence logo (4) of the 5′ GAATTC
                            3′ sequences bound by the restriction enzyme EcoRI (41). As can be seen by summing the
                            information of 2 bits over 6 positions, the total information is 12 bits
                            per site. In most binding sites on DNA the information varies with
                            position in the site (Figure 1)
                                (3,7,42), but
                            since information is additive when positions are independent (12), the total information can also
                            be computed in those cases (43).
                            If the positions are not independent, the correlations can be accounted
                            for by the appropriate computation (44,45). In this case
                            since there is no variation in the EcoRI site, the positions are
                            independent and the total 12 bits is obtained by a simple sum (12).


Binding, however, requires that the molecules stick together and to do so some
                    energy must be dissipated (46), as in the
                    example of the bouncing coin. This energy dissipation can be measured by
                    electromobility shift assays (1) or
                    directly by microcalorimetry (2), and it
                    is expressed as the specific binding constant Kspec, the ratio of
                    specific binding at GAATTC (Ks for
                    the after state) to nonspecific binding anywhere on the DNA
                        (Kn for the before state): 


(8)

For EcoRI, Ks and Kn have been measured, and Kspec is
                        1.6 × 105 ± 1.4 × 104 on the λ srI 2
                    site (47). The specific binding energy is 


(9)
 where we
                    have chosen  so as to give results on a
                    per-molecule basis, instead of the gas constant R which gives
                    joules per mole.  represents the maximum energy
                    available for the selection process (48,49). Since  is the ideal minimum energy
                    dissipation per bit, Equation (5), we
                    introduce the use of  as an ideal conversion factor to
                    determine the maximum number of bits corresponding to a given energy
                    dissipation: 


(10)
 which is
                    a remarkably simple equation. In the case of EcoRI, Renergy = 17.3 ± 0.1 bits/binding.
                    That is, the molecule could have, by the second law of thermodynamics, made an
                    average of 17.3 discrete yes-no selections for the given energy dissipation. But
                    from the sequence GAATTC we know that it only selects Rsequence = 12 bits per
                    binding. This must be less than the capacity, 


(11)
 so in parallel with Equation (6) we can define 


(12)
 must
                    exceed  (18). The observed efficiency measures the discrepancy between the
                    information and the energy as 


(13)



(14)








 by
                    substituting Equations (12) and (10) into (13). Other binding sites for EcoRI give similar but slightly
                    different efficiencies: λ srI 5 is  and pBR is , suggesting unaccounted for
                    experimental variation or some influence of the surrounding sequence that was
                    not used in the information measure. However, EcoRI is used here as an example
                    because it is a well-characterized DNA binding protein that has both
                    non-specific binding data and reported errors.
As a more general example, let's calculate the isothermal efficiency of the RepA
                    protein binding to its DNA sites. The sum of the varying sequence conservation
                    in Figure 1 for the range from −1 to +16 is Rsequence = 24.52±1.17
                    bits/site (reporting the standard error of the mean for the individual
                    information distribution (50)). The
                    non-specific binding energy is not known so we will (tentatively) assume it is
                    zero (i.e. ). The binding constant Ks has been reported as KD = 0.10(±0.09) nM (51). Taking  we
                    find  (bits per site). So from equation
                        (14) the efficiency is
                            ϵr = 0.74±0.05. If there is non-specific
                    binding, it would lower Renergy and
                    raise the efficiency.
Including EcoRI and RepA, the information used by DNA binding proteins for a
                    variety of genetic control systems has been measured (3,4,52) and 18 of 19 of them also have
                    efficiencies near 70% (manuscript in preparation). Strikingly, the quantum
                    efficiency of rhodopsin (66±2% for 12 species) (53), bacteriorhodopsin (67±4%) (54) and photoactive yellow protein (64%) (55) are also around 70%. Why are all these molecular
                    machines ∼70% efficient?
                    Evolution of isothermal efficiency up to 70%

Each of the molecular machines having 70% efficiency functions isothermally and
                    all of them select a discrete state from amongst several possible states. EcoRI
                    and other genetic recognizers select patterns on DNA (3), while the rhodopsin protein and its retinal chromophore
                    selects the stable bathorhodopsin (metarhodopsin II) configuration which
                    triggers reactions leading to a nerve impulse (24,56).
As Tribus and McIrvine have shown (57),
                    energy dissipation from human activities and machines such as computers is
                    orders of magnitude higher than the thermodynamic limit [Equation (5)]. The corresponding efficiencies of human
                    activities are on the order of 10−21, while computers (in 1997) had
                    reached 10−6 (58). Using
                    equation (2), Pierce and Cutler reported
                    that for amplitude modulation (AM) radio signals, “good quality speech or
                    television is a factor of several hundred times less efficient than the ideal”,
                    while for frequency modulation (FM) the efficiency can be at most 5% (28). The biological efficiencies near 70%
                    are high by human technology standards. However, this means that for every 100
                    photons absorbed by rhodopsin, 30 are wasted as heat (25,56). It would be
                    a great evolutionary advantage to see those lost 30 photons. Any DNA-protein
                    contacts that dissipate extra energy while not contributing information to help
                    locate sites of EcoRI, would be lost by mutations. Because the information
                    needed to locate binding sites is fixed (3,40), this atrophy drives
                    the efficiency up for nucleic acid recognizers. Something must be preventing
                    these molecular machines from exceeding 70% efficiency.
                    A power to noise ratio exceeding 1 explains 70% efficiencies

The observation that many molecular machines are 70% efficient can be understood
                    by using the isothermal efficiency given by Equation (7). In Figure 2, the
                    second law corresponds to the horizontal dashed line at 100%. Shannon's channel
                    capacity theorem can be used to demonstrate that the region between the second
                    law bound and the isothermal efficiency curve cannot be reached by any system.
                    The curve shows that an efficiency of 70% corresponds to a Py/Ny ratio of 1. Because the curve defines an upper bound, an upper limit on the
                    efficiency corresponds to a lower limit on Py/Ny.
                    So the efficiencies of 70% can be explained by proposing that Py > Ny.
                    Communications coding spaces

The reason that the energy dissipation Py barely exceeds the thermal
                    noise Ny can be understood by
                    considering the elegant geometrical derivation of the channel capacity by
                    Shannon in 1949 (27), in which he
                    represented messages as points in a high dimensional coding space. A complex
                    message, such as a song, can be sampled and digitized to produce a stream of
                    bits represented by voltage pulses in a wire. The amplitude of the first pulse
                    is independent of that of the second pulse and, more importantly, the thermal
                    noise which interferes with both affects each independently. There are four
                    possible combinations for two pulses and these may be represented in two
                    dimensions as a square. If we introduce a third pulse, the possible combinations
                    are represented by the corners of a cube. A message consisting of 100 pulses is
                    then expressed as a point on the corner of a 100 dimensional hypercube. These
                    points representing messages can be placed into other arrangements besides cubic
                    spacing to form different lattices (59).
Thermal noise interferes with the pulses, smearing them out to a Gaussian
                    distribution in each dimension. The combination of several independent Gaussian
                    distributions forms a spherical distribution (27,23), as discussed in
                    reference (32). To see this, we note that
                    since the noise of two pulses is independent, we can graph the magnitude noise
                    of the first pulse on the x axis and the second on the y axis to form a `noise vector' in the direction to the
                    point (x,y) as shown in Figure 4. Because the noise is Gaussian, the probability of
                    having a disturbance x has the form 


(15)
 (ignoring the constants, which will
                    drop out in a moment) and for the second pulse, 


(16)
 The probability of being at a point
                        (x,y) on the x-y plane is 


(17)
 since x and y are independent. Combining these three equations gives 


(18)
 Geometrically, x and y are the legs of a
                    triangle with hypotenuse r. If the joint probability P(x,y) is a constant,
                    then by Equation (18) r is a constant and the possible solutions trace out a circle. Furthermore, this
                    is true for every joint probability, so the overall distribution is circularly
                    symmetric at every radius (27,32). This argument extends to a third
                    pulse, so the noise is represented by a sphere around the original signal point
                    in three dimensional space. In general, when two or more independent Gaussian
                    distributions are combined orthogonally in one space they form a fuzzy spherical
                    shell, and at higher dimensions the sphere is hollow and well defined because no
                    matter which direction the thermal noise vector is pointing in the high
                    dimensional space, its magnitude is approximately constant over many pulses
                        (21,23,27,60). 
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Geometry for combining two Gaussian distributions.


A transmitted message is received as a point somewhere on this sphere around the
                    original message point (23,27,32). Given the point on the sphere, the receiver merely needs to
                    choose the closest sphere center to remove the noise. This is possible as long
                    as the spheres do not intersect significantly. The channel capacity formula
                    [Equation (3)] was derived by counting how
                    many nonoverlapping thermal noise spheres can be packed together into the larger
                    sphere defined by the power dissipation and the thermal noise. Coding of the
                    messages is defined by the sphere locations in the lattice packing (27).
                    Molecular coding spaces

To model the coding space of molecules, we replace the voltage pulses with a
                    mechanical equivalent; `pins' in a lock make a good analogy (23). Each pin is a cluster of atoms of a
                    molecule that moves as a unit independently of the motion of other pins. To the
                    degree that the pins are not independent, the effectiveness of the lock is
                    reduced and, correspondingly, a molecular machine will function below capacity.
                    (Alternatively, a pin could be represented by a vibrational mode of the
                    molecule. By definition these normal modes are independent.) As in a lock, the
                    independently moving pins cooperate to change the state of the molecule.
Since the thermal noise impacting on the molecule is Gaussian and there are many
                    pins, the energetic state of a molecular machine such as EcoRI or rhodopsin can
                    also be represented as a sphere in a high dimensional coding space Y and an equivalent capacity can be derived for these
                    molecules [Equation (4)] (19,23,32). For example, when
                    rhodopsin is in the dark, the thermal noise impacting on it from all directions
                    can be represented by a sphere. The direction of this energy changes randomly by
                    Brownian motion (19). As long as two
                    thermal noise spheres do not intersect significantly, the molecule will only
                    rarely switch between the states and there will be few errors. Upon absorbing a
                    photon the radius of the sphere expands.
                    The before, forward and degenerate coding states

Different frequencies of light have different energies, but over most of the
                    spectrum the efficiency of rhodopsin is constant (61). The reason for this effect is that after absorption,
                    the excess photon energy is lost, leaving rhodopsin in a high energy metastable
                    state (21,54) encompassing several possible lower energy molecular states. It
                    is from this `before' state that the molecule must choose a new
                        `forward ' configuration (23) or it will collapse back to its original state, which we coin
                    the `degenerate' state. Figure 5 shows these three state spheres. 
                    
Figure 5.
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Velocity-potential state diagram for bistate molecular machines. See
                                (23) for more details about
                            this space and these spheres. Three spheres in a high dimensional space
                            are represented as two concentric circles and a line segment. The outer
                            circle represents the before sphere with radius ; the inner circle
                            represents the degenerate after sphere and the
                            horizontal line segment represents the forward after sphere. Bistate molecular machines have these two after spheres, both of which have a radius determined by thermal noise, . The vertical arrow
                            indicates the direction and magnitude of the velocity, , that the molecular
                            machine moves at to escape from the degenerate sphere
                            state. Note that the Pythagorean theorem defines the relationship
                            between the three labeled line segments which form a triangle since the
                            direction of motion is perpendicular to the forward sphere line segment (23). The
                            diagram is derived from Figure 5 of
                            Shannon's 1949 paper (23,27). For an alternative diagram and
                            proof, see the Appendix.


In Figure 5, both the forward and the degenerate spheres have
                    radii determined by thermal noise, and both are enclosed by the before sphere. However, there is one unusual feature of
                    high dimensional space that must be handled to correctly draw a diagram of the
                    relationships between the three spheres. Because it represents the same thermal
                    noise energy as the degenerate sphere, the forward state sphere is represented by a straight line
                    segment having a length the same as the diameter of the degenerate sphere. This flattened representation, which
                    Shannon used in his proof of the channel capacity theorem (27), can be understood by considering an analogy for noise,
                    the effect of winds on an airplane in a turbulent storm. As the plane flies
                    forward it is buffeted in three dimensions. Two of these throw it off course
                    while the third advances or retards it. Likewise, if the plane were flying in a
                    100 dimensional space, 99% of the buffeting wind would throw it off course,
                    while only 1% would affect its progress. Thermal noise affects molecular
                    decisions in a similar way. Thus, with respect to the direction of motion
                    between molecular states, thermal noise can be represented as a flat disc at 90°
                    to that motion; as engineers (following Shannon) we can neglect the 1%. However,
                    if 1% leads to too much error (by state switching from the forward back to the degenerate state and vice versa), the errors may be reduced further by evolving
                    a higher dimensionality. Many molecular machines are likely to operate in this
                    realm of high dimensions because the potential dimensionality of a molecule is
                    the number of degrees of freedom, and this depends on the number of atoms, n, according to 3n−6 (3 dimensions of
                    motion for each atom, less 3 translational motions and 3 rotations of the whole
                    molecule, as measured in infrared spectroscopy). Only some of the atoms can be
                    involved in the recognition process required to define states, but large
                    molecules such as EcoRI on DNA [n = 9106 (62)] and rhodopsin [n = 5511 (63)] could be operating in many dimensions.
                    So for these examples the error could be negligible, and in Figure 5, the forward after sphere is drawn
                    as a straight line segment.
If the forward sphere intersected the degenerate sphere, then rhodopsin could switch between
                    these states merely by thermal noise. Thus the forward state
                    must be sufficiently displaced from the degenerate state. The degenerate sphere is exactly in the center of the before sphere because the photon excitation causes high
                    energy vibrations of the entire molecule in no particular direction so these two
                    spheres are drawn as concentric circles. Having absorbed a photon, rhodopsin is
                    in the before state ready to `choose' between the degenerate and the forward state.
                    Coding space explanation of Py/Ny > 1

For a molecular machine, the time unit is defined by the operation which selects
                    the after states, so power is equal to the energy dissipated
                    during one state selection. Furthermore, the kinetic energy of each thermally
                    vibrating pin is proportional to the square of its maximum velocity when the
                    potential energy is zero. Combining these two ideas, we see that the maximum pin
                    velocity is proportional to the square root of the power. So, given the
                    available energy Py, the maximum
                    velocity that the molecule can attain to escape the degenerate sphere state is  (23). This is shown as an arrow connecting the centers of the degenerate and forward states in Figure 5.
Likewise, the unavoidable thermal noise energy Ny that flows into and
                    through the molecule during a molecular machine operation interferes with the
                    corresponding power dissipation vector and has a magnitude of  (23). In the high dimensional space, most of the noise is at right
                    angles to the power, so together these two orthogonal vectors define the radius
                    of the before sphere to be . From
                    the before state rhodopsin will dissipate energy and select
                    either the forward or the degenerate after state. These two states will be distinct from each other only if they do not
                    intersect, which means that  must
                    exceed the radius of the degenerate thermal noise sphere, , and so Py/Ny > 1
                    and the efficiency cannot be higher than  by
                    Equation (7). Figure 6 shows the geometrical configuration when Py = Ny.
                    This diagram and the efficiency equation explain why many molecular machines
                    have efficiencies near 70%. 
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Velocity-potential state diagram for optimal bistate molecular machines
                            in which Py = Ny.
                            In this condition a molecular machine cannot have an efficiency higher
                            than . Spectral coloring
                            suggests increasing energy with radius.


Why is the degenerate sphere avoided as much as possible by
                    molecular machines? For every point on the before sphere there
                    is a corresponding point on the degenerate sphere. They
                    represent the same motions except that the before sphere
                    motions have more energy. Yet in the before sphere all possible
                    substates are available to choose from since it encloses many after spheres, while in the degenerate sphere the energy has been dissipated so there is no possibility of making
                    choices anymore. If the molecular machine enters the degenerate sphere it would have wasted its energy. For rhodopsin, it would return to its
                    original state and fail to detect a photon. Worse, if the degenerate sphere intersected the forward sphere for rhodopsin, rhodopsin could switch between the two and one would see
                    flashes of light while in the dark, which would effectively render one blind.
                    For EcoRI the degenerate sphere represents binding to and
                    cutting any DNA sequence, which would be fatal to the bacterium. So in both
                    cases significant intersection between the degenerate and forward spheres is eliminated by natural selection. In the
                    high dimensional coding space, this leads to Py > Ny and ln(2) as the maximum efficiency.
                    Generality of coding spaces

The astute reader may have noticed that the coding spaces for rhodopsin and EcoRI
                    appear to be constructed from different physical bases. The coding space for
                    rhodopsin appears to be about the motion of atoms in physical space for
                    distinguishing its coding spheres, while EcoRI has specific DNA sequences that
                    correspond to distinct states and hence to different coding spheres. That is,
                    there appear to be two different ways to measure the efficiency of molecular
                    machines: successful switching to total attempts at switching (`yes/no' by
                    rhodopsin) and information gained to energy dissipated (`info/energy' by EcoRI).
                    While these are indeed different, the commonalities between the two systems lead
                    to the same theoretical picture in coding space (Figure 5 and Figure 6),
                    consistent with the general nature of information theory (13). First, both molecular machines, as defined previously
                        (23), function under thermal noise
                    and thus their parts (pins) move by approximately Gaussian distributions.
                    Second, these parts are or can evolve to be moving independently. Since the
                    channel capacity is reduced if there are dependencies (27), by making the parts more independent the capacity can
                    be maximized during evolution
                        [dspace increases in (4)].
At this point, given Gaussianicity and independence, the thermal motions of an
                    ideal resting molecule are modeled as a sphere in a high dimensional space in
                    both cases (23). For rhodopsin,
                    intersecting spheres means switching states. Thermal noise could switch the
                    state of rhodopsin so that the animal would see light when there was no photon.
                    For EcoRI, intersecting spheres means confusion of sequences. For example
                    instead of only binding GAATTC, thermal noise could flexibly distort the EcoRI
                    protein so that it might also bind AAATTC, leading to inappropriate digestion of
                    the genome [`star activity' (64)]. The
                    coding space must map to the physical molecule, but the mapping can be different
                    in different cases, just as an IF statement in a computer language may be
                    supported by relays, vacuum tubes, transistors, or proteins and DNA in a genetic
                    control circuit (65). That is, software
                    must be supported by some physical mechanism, the hardware, but one usually
                    cannot tell from the running software what that underlying mechanism is.
                    Shannon's channel capacity theorem implies that both EcoRI and rhodopsin can
                    evolve to avoid sphere intersection (confusion of states), thereby maximizing
                    the capacity and increasing the efficiency. Any biological system having
                    distinct states that function under thermal noise—and they all must according to
                    the third law of thermodynamics—will have these properties. If having two
                    distinct resting after states gives an advantage to the
                    organism, then in the simplest cases the molecular machine efficiency will be
                    maximized, evolving up to the bound of the curve shown in Figure 2, according to Equation (7), with the energy dissipation Py decreasing until it just
                    exceeds Ny. At this point the
                    efficiency will have evolved to , as is
                    observed.
An implication of this result is that the molecular machines must have indeed
                    evolved to have the highest possible efficiency, as predicted by Lotka in 1922
                        (66). Further, since the efficiency
                    is directly related to the channel capacity [see equation (7)], they must also be operating close to the maximum
                    possible capacity. As Shannon pointed out (27) to do so they must not only have codes, but they also must be
                    using nearly optimal codes. Recent experimental work suggests that the DNA
                    binding protein Fis has a coding system (67) because it shows the high dimensional threshold effect predicted
                    by Shannon (27). The observed sharp
                    transition from binding to non-specific binding as the individual information of
                    Fis binding sites is decreased below zero bits is apparently caused by the
                    distinct edge of the DNA binding site recognition sphere. Similar threshold
                    effects have been observed in restriction enzymes and other DNA recognition
                    proteins (68). A major challenge in
                    biology and nanotechnology is to understand what the codes of molecular machines
                    are such that they can create sharp recognition effects and how the codes lead
                    to the optimal efficiency of 70%.
                    SUMMARY

The area under a sequence logo represents the information conserved at a binding site
                    (Rsequence). In contrast, the
                information needed to find the binding sites is fixed by the size of the genome and
                the number of binding sites required for physiological functions
                        (Rfrequency). Generally, the
                logo information evolves to match this required value
                        () (3,40).
If the information in a binding site is indirectly determined by physiological
                functions, then how does that determine the corresponding binding energy? We can
                express the binding energy as the number of bits that could be gained for that
                energy dissipation by using a version of the second law of thermodynamics that
                applies when the temperature does not change, which is the case for molecular
                binding. This allows us to compare the actual number of bits gained by binding
                    (Rsequence) to the maximum bits
                possible for the given energy dissipation
                        (Renergy) to form an efficiency
                        (ϵr = Rsequence/Renergy)
                that, unlike the Carnot efficiency, applies at constant temperature. Because the
                energy dissipated during binding may decrease by loss of unnecessary contacts, we
                anticipate that most molecular systems will have evolved to a maximum efficiency.
                This turns out to be near 70% for a number of systems.
Following the footsteps of Bell Labs satellite engineers in 1959 (28,29),
                we can use the mechanical equivalent of Shannon's channel capacity [Equation (4)]
                    (27) to define an equation for the
                isothermal efficiency [Equation (7)] which
                relates it to the binding energy normalized by the thermal noise. Using the
                isothermal efficiency curve, we find that to explain the observed 70% efficiencies,
                the energy dissipated during binding must exceed the thermal noise flowing through
                the molecular machine at the same time.
The reason for this effect can be understood by considering a high dimension coding
                space. In this space the instantaneous velocity and potential energy of a molecule
                is represented by a point on a sphere that corresponds to the state of the molecule.
                The point moves by Brownian motion across the sphere and if the sphere significantly
                intersects another sphere, then the molecule can readily switch states. Physiology
                and the environment set an acceptable error rate at which inappropriate switching
                can occur. Inspection of the geometry of the space shows that to attain sufficient
                state separation only requires that the energy dissipated just exceed the thermal
                noise. Using the efficiency equation, this predicts a maximum efficiency of
                ln2 = 0.69, which is close to observed values.
When he developed information theory, Claude Shannon included a criterion which
                cannot be found anywhere in classical thermodynamics nor physics, namely that
                messages should be, and can be, chosen to be distinct (32). The equivalent concept for biological molecular machines
                is that molecular states can evolve to be distinct. This idea can be developed by
                noting that since the mechanical equivalent of voltage is the maximum potential
                energy (or maximum velocity) of harmonic oscillators, we can reappoint Shannon's
                geometrical conception of communications into the molecular situation. From that
                comes the important concept that it is possible to attain distinct molecular states
                (with a given switching error rate) if the molecules use a high enough dimension.
                They can do this by evolving many independent parts (pins) that vibrate as harmonic
                oscillators under thermal noise, which means that their velocities have Gaussian
                distributions (23). A combination of
                independent Gaussian distributions is spherical, so Shannon's message spheres
                correspond to distinct molecular states, also represented by spheres. Separation of
                states becomes easier in a high dimensional space because the surfaces of the
                spheres become more distinct (21,23,27,60). To get from one state to
                another requires a velocity in a certain direction, and that corresponds to a
                particular rearrangement of the molecule's structure.
The concept of multiple distinct molecular states represented by spheres allowed us
                to steal the key prize of information theory for use in molecular biology, namely
                the channel capacity theorem (23). Restating the channel capacity theorem as a
                `molecular machine capacity theorem', we see that because they are able to change
                and adapt through Darwinian evolution, biological states of molecules may become as
                distinct as necessary to reduce error to a level acceptable for robust survival. The
                molecular machine capacity theorem implies that if a system is to approach capacity
                it must do so by creating appropriate codes (27). So the discovery reported in this paper of 70% efficiencies leads
                to the additional discovery that molecular states not only can (by the molecular
                machine capacity theorem) but actually do evolve codes to become as distinct as
                necessary for survival.
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                    APPENDIX

In this Appendix we present an alternative geometric diagram that leads to a
                    simple proof for why Py/Ny > 1.
                    The derivation depends on several observations about the high dimensional
                    spheres used to model molecular states.
To recapitulate, in Shannon's 1949 model for a communications system, a series of
                    voltage pulses are sent over a wire to form a message (27). While the transmitted pulses may be either 0 or 1
                    volts (for example), the received pulses vary by Gaussian distributions around
                    each of these values because of thermal noise (23). Since the noise affects each pulse independently, the pulses
                    can be represented by geometrically orthogonal vectors in a space with
                    dimensions of volts. Although the transmitted message is a single point in this
                    high dimensional space, the received message is dislocated by the thermal noise
                    to a nearby location in the space. If a single message, given by particular
                    pulse train, were repeated many times the received points for that message would
                    form a sphere in the space. The assigned locations of the spheres for different
                    messages is called the coding. Given a received set of noisy voltage pulses,
                    represented by a single point in the space, the nearest sphere center is chosen
                    so as to remove the noise. This process is called decoding. The challenge for
                    designing a communications system is to place the spheres so that they do not
                    overlap and as a consequence decoding will frequently produce the original
                    signal. This is the key concept underlying all modern communications systems and
                    it explains why their error rates are so low.
A similar model was developed to represent the states of molecular machines
                        (19,23,32). The current state of
                    a molecular machine is represented by the set of maximum velocities of
                    independently moving components (pins) of the molecule. (The square root of the
                    energy is proportional to the maximum velocity of an oscillator in a thermal
                    bath.) As with the voltage model, the pins are disturbed by thermal noise and so
                    their maximum velocities have a Gaussian distribution, which means that all of
                    the possible movements of the molecule can be represented by a sphere in a
                    `velocity space', Y (23). Distances in this space represent changes in the shape of the
                    molecule in a particular way, in other words, conformational rearrangements.
                    These rearrangements can occur spontaneously if two spheres intersect.
In Shannon's model the dimensionality is presumed to be extremely large so the
                    spherical shells are thin. Since molecules are finite, the velocity space will
                    have a finite dimensionality so the sphere shells will have a distinct thickness
                        (23). To avoid intersections the
                    sphere centers may have to be separated further than twice the sphere radii. A
                    buffer zone between the spheres reduces errors, especially in the lower
                    dimensional spaces that biological systems may be forced to evolve in.
These considerations lay the groundwork for constructing a simple geometric
                    diagram representing the initial (`degenerate') state of a
                    molecule, placed at the origin of the velocity space and a single
                        `forward' sphere placed some distance away (Figure 7). Both spheres have radii  and the lattice spacing of the
                    coding space is u, following standard conventions (59, p. 26). Creating a buffer zone by
                    setting 


(19)
 ensures
                    that the fuzzy spheres have reduced intersection. The factor of 2 represents the
                    minimum separation of the circles shown in Figure 7, but a larger value could be used without substantially altering
                    the proof. 
                    
Figure 7.
Open in new tabDownload slide

Molecular machine coding space configuration. Relationships between
                            dissipated energy from a molecular machine, Py, the thermal
                            noise in the molecular machine Ny and the coding
                            states are shown. Points D (degenerate sphere) and F (forward sphere)
                            represent the attractor centers of spheres in a high dimensional coding
                            space. M is the midpoint between the spheres. The
                            distance between the sphere centers is u and the radius
                            of each sphere is . Starting from the attractor centered at D, a molecular machine moves a distance  towards the forward sphere F to place the
                            sphere center at B, but the molecule itself is
                            deflected orthogonally by thermal noise  to the point A. The distance
                            from A to B is , the distance from A to D is d0 and the distance from A to F is d1.


The maximum velocity (potential) that the molecule has available to switch states
                    is  (23). Suppose that the velocity  is in
                    the direction of the forward sphere and sufficient to place the
                    sphere center at point B, which can be inside the forward sphere or to the right of the midpoint M between the spheres. In the high dimensional space,
                    thermal noise added to this displacement will, for the most part, be at right
                    angles to the direction of the power Py. (In a 100 dimensional space
                    99% of the noise will be at right angles to the power direction.) Thus the
                    instantaneous state of the molecule is represented by a point A shown in the figure. [In Shannon's Figure 5, A is the `received' point (27).]
Decoding in Shannon's voltage model consists of choosing the closest sphere
                    center. Correspondingly, decoding in this molecular machine velocity model
                    consists of selecting the closest sphere center by the means of an attractor
                    around which the molecule performs noisy damped oscillation according to a
                    multidimensional Ornstein-Uhlenbeck process (69). Which sphere will probably become the attractor center?
                    Assuming that the closest sphere center will become the attractor, we can
                    determine this by comparing two distances, d0 the
                    distance from A to D, the center of the degenerate sphere and d1 the
                    distance from A to F, the center of the forward sphere. By inspection: 


(20)



(21)
 and 


(22)

Decoding to the forward sphere occurs when 


(23)
 from
                    which we quickly obtain 


(24)
 by substituting Equations (21) and (22) into the square
                    of (23). Finally, from Equations (19) and (24) we find: 


(25)
 or 


(26)
 from which a maximum efficiency of ln(2) follows directly
                    using Equation (7). When Py/Ny > 1,
                    decoding will usually return the molecular machine to the same state, so in the
                    absence of power Py the molecular
                    machine will be stable around one attractor at a time.
All points B to the right of midpoint M decode
                    to F. In the limit as the buffer zone is reduced at higher
                    dimensions,  and . The line segment AB can then represent the points that decode to the forward sphere. This corresponds to Figures 5 and 6, in
                    which the forward sphere is represented by a straight line
                    segment perpendicular to the power. As the dimension of the space increases,
                    effectively , because the noise in the
                    direction of the power is negligible, and so ,
                    giving the `classical' Shannon triangle with sides ,  and  (27). All points of the forward sphere are outside
                    the degenerate sphere when Py > Ny. Thus it does not matter
                    which representation of the high dimensional space geometry is used. However,
                    the representation of the forward sphere as a straight line is
                    more appropriate when determining the radius of the volume in which point A can reside since it must be within a sphere of radius  (23,27). This before volume and the volume of the after spheres are used to compute the machine capacity (23).
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