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ABSTRACT

Genome-wide association study (GWAS) is
nowadays widely used to identify genes involved in
human complex disease. The standard GWAS
analysis examines SNPs/genes independently and
identifies only a number of the most significant
SNPs. It ignores the combined effect of weaker
SNPs/genes, which leads to difficulties to explore
biological function and mechanism from a systems
point of view. Although gene set enrichment
analysis (GSEA) has been introduced to GWAS to
overcome these limitations by identifying the correl-
ation between pathways/gene sets and traits, the
heavy dependence on genotype data, which is not
easily available for most published GWAS investiga-
tions, has led to limited application of it. In order to
perform GSEA on a simple list of GWAS SNP
P-values, we implemented GSEA by using SNP
label permutation. We further improved GSEA
(i-GSEA) by focusing on pathways/gene sets with
high proportion of significant genes. To provide re-
searchers an open platform to analyze GWAS
data, we developed the i-GSEA4GWAS (improved
GSEA for GWAS) web server. i-GSEA4GWAS
implements the i-GSEA approach and aims to
provide new insights in complex disease
studies. i-GSEA4GWAS is freely available at
http://gsea4gwas.psych.ac.cn/.

INTRODUCTION

Genome-wide association study (GWAS) has become a
popular approach by utilizing genome-wide genotyping

array to map susceptibility effects through examining as-
sociations between SNP genotype frequency and traits
(1,2). The standard GWAS analysis focuses on single
SNP/gene and identifies only a number of the most sig-
nificant SNPs that account for only a small proportion of
the genetic variants and offers limited understanding of
complex diseases (3). It also ignores the combined SNP/
gene effects representing interactions of multiple genetic
factors of complex disease, which lead to difficulties in
exploring biological function and mechanism from a
systems point of view.

To overcome these limitations, the principle of gene set
analysis (GSA), which was recently developed to facilitate
handling of genome-wide expression data (4), has been
introduced to GWAS. GSA tests the correlation between
gene set, which is defined as genes involved in the same
pathway, and trait, resting on the assumption that genes
belonging to a disease-related pathway/gene set trend to
reveal concordant signals. Recently, several implementa-
tions or application programs using the GSA principle
have been developed (3,5–14). An interesting implementa-
tion is the gene set enrichment analysis (GSEA) which
technically evaluates whether the distribution of genes
sharing a biochemical or cellular function is different
from the distribution of a ranked genome-wide gene list
by computing Kolmogorov–Smirnov like statistics (3,15).
Successful applications of GSEA in GWAS include the
study of Parkinson’s disease (3), Crohn’s disease (11)
and the study of host control for HIV-1 (9).

However, GSEA usually depends on genotype data,
which is not easily available for most published GWAS
investigations. This leads to a limited application of it,
especially application in the secondary analysis of pub-
lished GWASs to best interpret the remaining long list
of GWAS data from a systems point of view. In order
to perform GSEA on easily available GWAS data,
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mainly SNP P-values, we implemented GSEA by using
SNP label permutation instead of phenotype label permu-
tation to analyze P-values. We further improved the
GSEA (i-GSEA) by focusing on pathways/gene sets with
high proportions of significant genes instead of relying
only on the total significance coming from either a few
or many significant genes. Our study shows that i-GSEA
has the improved sensitivity to identify pathways/gene sets
representing combined effects of possibly modest SNPs/
genes.

There have been more than 480 GWAS publications
covering a broad range of human diseases available by
the end of January 2010 [see http://www.genome
.gov/gwastudies/ and (16)] and the number keeps
increasing. In order to implement the i-GSEA approach
and provide researchers with an open platform to analyze
the easily available GWAS data from both publications
and self experiments, we developed the i-GSEA4GWAS
(improved GSEA for GWAS) web server. i-GSEA4GWAS
aims to identify novel pathways/gene sets correlated with
given traits and provide new insights into complex disease
study, especially in complementation with standard single
SNP/gene based GWAS analysis.

Overview of the i-GSEA algorithm

The i-GSEA4GWAS web server implements i-GSEA to
help researchers explore GWAS data efficiently. i-GSEA
is an application and extension of GSEA. For GSEA, it
runs the following three key procedures. (i) The max stat-
istics or �log(P-value) of closely spaced SNPs in a gene is
used to represent the gene; then, the ranked gene list with
corresponding representing values is utilized to calculate
each gene set’s enrichment score (ES), i.e. a Kolmogorov–
Smirnov like statistics with weight 1, which reflects the
trend that genes of a gene set tend to be located at the
top of the entire ranked genome-wide gene list. (ii)
The phenotype label permutation (to break the association
between genotype and phenotype) and a straightforward
normalization are performed to generate the distribution
of the ES and correct gene variation (i.e. different genes
with different number of SNPs mapped will result in iden-
tification of gene sets containing genes with more SNPs
mapped, instead of genes with functional correlation) and
gene set variation (i.e. different gene sets contain different
number of genes) (3). (iii) Based on all the distributions of
ESs generated by permutation, false discovery rate (FDR)
is used for multiple testing correction (17).

In i-GSEA, we implement SNP label permutation
instead of phenotype label permutation to analyze SNP
P-values and to correct gene and gene set variation and
multiply k/K to the ES to get the significance proportion
based enrichment score (SPES), where k is the propor-
tion of significant genes of the gene set and K is the pro-
portion of significant genes of the total genes in the
GWAS. Here, significant genes are defined as the genes
mapped with at least one of the top 5% of all SNPs.
Instead of ES which focuses on the total significance
coming from either a few or many significant genes,
SPES emphasizes on total significance coming from high
proportion of significant genes. So, i-GSEA trends to pick

up pathways/gene sets including a high proportion of sig-
nificant genes and is more appropriate for study of the
combined effects of possibly modest SNPs/genes in
complex disease. This ensures i-GSEA the improved
sensitivity.

Description of the i-GSAE4GWAS web server

System development, configuration and system
overview. i-GSEA4GWAS is written in Java and JSP.
The program is running in a high-end computing cluster
with six dedicated Intel XEON Quad-Core CPUs at
2.0GHz and two dedicated Intel XEON Quad-Core
CPUs at 3.0GHz (representing a total of 32 cores) with
a total of 96 GB of memory.
i-GSEA4GWAS is freely available and there is NO

registration required. We also provide a template
program for users to access our web server through
command lines instead of web browser. Figure 1 shows
the system architecture and overview of our
i-GSEA4GWAS web server.

Input data. The input data of i-GWAS are SNP data,
mainly P-values. The server will transform the P-value
to �log(P-value). Some other values of association test
like odds ratio and statistics are also accepted. Here, we
define all these input values as ‘association value’. The
detailed format of input is a SNP list with two columns,
namely SNP identifier and its corresponding association
value. A gene list with gene HUGO symbol (http://www
.genenames.org/) (18) and along with corresponding asso-
ciation value is also accepted but not recommended due to
the limitation of gene variation as described above.
The collection of pathways/gene sets utilized in

i-GSEA4GWAS are extracted and curated from
MSigDB v2.5 (http://www.broadinstitute.org/gsea
/msigdb/) (15) to ensure comprehensiveness and high
quality. It includes gene sets denoting canonical
pathways integrated from a variety of online resources
like KEGG (19) and BioCarta (http://www.biocarta
.com/), and GO (gene ontology) terms with high confi-
dence (20). Additionally, i-GSEA4GWAS supports
customized gene sets, i.e. users can upload their own
gene sets. This provides the opportunity that the know-
ledge database (gene sets) can always be expanded, and
makes it easy for users to test their hypothesis within their
research interest.

Running procedure. First, our server maps SNPs to the
genome-wide genes. i-GSEA4GWAS contains an
optional multiple-level broad-to-narrow SNPs->genes
mapping system, which helps users either fully explore
genome-wide SNP data (by choosing ‘500-kb upstream
and downstream of gene’) or narrow down the research
scope by only focusing on functional SNPs (by choosing
‘functional SNP’). The SNPs->genes mapping is estab-
lished based on SNP and gene annotations from the
Ensembl BioMart database (Release 56–15 September
2009, http://www.ensembl.org/biomart/martview) (21).
Next, the program uses the list of SNP-mapped genes to
filter the collection of pathways/gene sets to obtain candi-
date pathways/gene sets. Additional filtering includes a
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keyword search to define the function of gene sets, to
mask major histocompatibility complex/extended major
histocompatibility complex (MHC/xMHC) region (22)
to only explore the non-MHC/xMHC region (23), and
to restrain gene set size to avoid overly narrow or overly
broad functional categories and too large a search space,
with the default parameter of minimum 20 and maximum
200 (3,9). Then i-GSEA4GWAS performs i-GSEA to
identify pathways/gene sets correlated with traits. When
the job is running, the progress of the three key steps
(mapping, permutation and statistical analysis) will be
shown in the progress bar.

Output and examples. The pathways/gene sets, with
FDR< 0.25 (the threshold of FDR< 0.25 denotes the
confidence of ‘possible’ or ‘hypothesis’, while the thresh-
old of FDR< 0.05 is regarded as ‘high confidence’ or ‘with
statistical significance’), are displayed in a tabular form
with links to detailed text information of pathways/gene
sets, genes and SNPs. One characteristic feature of
i-GSEA4GWAS output is the Manhattan plot of gene
set, which uses the Manhattan plot of GWAS as back-
ground, and highlights the results of association test for
a given pathway/gene set. It helps users to compare the
association results of the given pathway/gene set with the
genome-scale data graphically. The result page also
contains the download URL, from where all the results,
both texts and figures, can be downloaded.

The first example data is SNP P-value from the GWAS
of HIV-1 host control investigation, which studied the
quantitative trait—HIV-1 viral load set point and used
Illumina HumanHap550 BeadChip (24). The input
includes 518 754 SNPs with corresponding P-values.
There are 479 086 SNPs mapped to 16 524 genes by
using the default ‘500 kb upstream and downstream of
gene’. 251 gene sets were selected by using ‘canonical
pathways’, and using the default gene set size ranges
from 20 through 200. A total of 23 pathways/gene sets
were identified to be possibly correlated with the
trait (FDR< 0.25). Among the 23 pathways, five
pathways namely ‘antigen processing and presenta-
tion’, ‘inflampathway’, ‘cskpathway’, ‘ribosome’ and
‘st myocyte ad pathway’ have high confidence
(FDR< 0.05). The pathways ‘antigen processing and pres-
entation’ (FDR=0.009), ‘inflampathway’ (FDR
=0.010), and ‘cskpathway’ (FDR=0.011) have been
replicated in our follow-up work of the initial GWAS by
either the top hits or using GSEA (9). Both the pathways
‘ribosome’ and ‘st myocyte ad pathway’ were only
identified by i-GSEA (FDR< 0.05) and were not
replicated by the follow-up GWAS and GSEA analysis.
However, both pathways have references to support their
relevance to HIV. For pathway ‘ribosome’
(FDR=0.047), it has been known that the ribosomal
frame shifting is a kind of gene expression mechanism of

Figure 1. The system architecture and overview of i-GSEA4GWAS web server.
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several RNA viruses (including HIV-1 and SARS-CoV) to
express replicase enzymes and a couple of investigations
have been carried out on this topic (25–27). The pathway
‘st myocyte ad pathway’ (FDR=0.040) contains a variety
of adrenergic receptors that induce subtype-specific signal-
ing effects. The top gene with the smallest P-value in this
gene set, ITPR1 (inositol 1,4,5-triphosphate receptor,
type 1), has been reported to interact with genes in HIV.
For example HIV-1 Nef interacts with ITPR1 to trigger
the activation of plasma membrane calcium influx
channels (28); HIV-1 Tat induces release of calcium
from ITPR1-regulated stores in neurons and astrocytes,
an effect that plays an important role in Tat-induced
TNF-a production (29).

The second example data are SNP P-values of the
GWAS of bipolar disorder, which is a case/control study
and utilized the GeneChip 500K Mapping Array Set
(Affymetrix chip) (2). i-GSEA4GWAS identified two
pathways/gene sets (FDR< 0.05) by using the default
‘500 kb upstream and downstream of gene’
SNPs-> genes mapping rule, searching ‘canonical
pathways’ and GO terms, and masking the xMHC
region. One pathway is ‘glutathione metabolism’
(FDR=0.036), which was also reported by Holmans
et al (30). Reducing glutathione (GSH) level will lead to
an increased potential for cellular oxidative stress, which
has been implicated in the pathology of bipolar disorder,
and recently some studies have been performed on animal
models (31,32). The other one is ‘cysteine type endopep-
tidase activity’ (FDR=0.041), which might be a novel
functional biological mechanism related to bipolar
disorder and worthy of further study. There is no
pathway/gene set found with FDR< 0.05 or FDR< 0.25
by using GSEA with the same parameters.

DISCUSSION

Our web server implements i-GSEA for GWAS data
analysis to explore the biological function and mechanism
from a systems point of view. It is efficient not only for
in-house GWASs with available genotype data, but also
for secondary data mining of published GWASs, where
genotype data are not readily available. i-GSEA4GWAS
aims to help researchers take the best advantage of
the high-cost GWAS data to look for new biologic-
al insights worthy of further confirmation. This represents
the major potential for i-GSEA4GWAS. The improved
i-GSEA approach, the optimal multiple-level
SNPs->genes mapping system, the comprehensive
pathway/gene set database with options of customization,
as well as the consideration of MHC/xMHC region dis-
tinguish i-GSEA4GWAS from other programs. It should
be noted that i-GSEA4GWAS does not take into account
the linkage disequilibrium (LD) patterns from SNP
arrays and would not prune the set of SNPs for LD
since these can only be done when genotype data is avail-
able. So, users are recommended to input SNPs not in
LD (say r2< 0.2) to reduce the possibility of biased
results due to LD patterns from SNP arrays. On the

other hand, as the name of the web server defines, i-
GSEA4GWAS is only applicable to whole-genome SNP
arrays.
i-GSEA employs SNP label permutation to correct gene

variation to reduce the bias due to different genes with
different number of mapped SNPs, which is ignored by
the non-randomization approach such as the segmenta-
tion test (33) as implemented in the GeSBAP web server
(10). This correction ensures to identify gene sets consist-
ing of non-random high-association genes with biological
plausibility instead of random high-association genes with
large numbers of mapped SNPs. Furthermore, the key
issue of i-GSEA, focusing on pathways/gene sets with
high proportion of significant genes to detect combin-
ations of modest effects, greatly improves sensitivity. Let
n denote the number of pathways with FDR< 0.05 and m
represent the number of pathways with both FDR< 0.05
and references to support, our comparison study between
i-GSEA and GSEA shows, in the HIV-1 host control and
bipolar disorder study as described above, n=7 and
m=6 for i-GSEA, while n=2 and m=2 for GSEA.
Further comparison by using the other six Wellcome
Trust Case Control Consortium GWASs except bipolar
disorder (2) obtained the result that n=33 and m=14
for i-GSEA, while n=2, m=1 for GSEA. In addition,
the pathways identified (FDR< 0.05) by i-GSEA include
all the pathways identified by GSEA in all the above com-
parisons. These show that i-GSEA has improved sensitiv-
ity in comparison to GSEA. Our data examples also show
that i-GSEA4GWAS obtains very meaningful results with
different GWAS designs (quantitative trait and case/
control) and different genotyping platforms (Illumina
and Affymetrix).
There are always conflicts between the amount and

the quality of the gene sets utilized for computation.
Using a large amount of gene sets, such as all GO
terms, will introduce large background and noise due to
the large number and low confidence of some gene sets,
while only using a few gene sets will lose information.
Moreover, the knowledge of gene sets is keeping
increasing. To overcome this, we chose a balanced
strategy, using a curated pathway/gene set database with
consideration of both comprehensiveness and high
quality, and allow researchers to upload their customized
gene sets to make sure the gene sets of research focus will
be well represented. This ensures that i-GSEA4GWAS
contains a high-quality and reasonable search space. The
i-GSEA4GWAS will be regularly updated to ensure the
most up-to-date searching database and annotations.
i-GSEA4GWAS also integrates the curated copy number
variations (CNVs) from the Database of Genomic
Variants (http://projects.tcag.ca/variation/) (34). In the
future, the CNV functional module will be further
extended to include the CNV probes of Illumina,
Affymetrix and more genome-wide genotyping arrays.
In summary, the i-GSEA4GWAS web server provides

researchers an efficient open platform for GWAS analysis,
helping further interpret the SNP P-values from hundreds
of available GWASs and future GWASs to provide new
insights into disease study.
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