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ABSTRACT

Gene network inference engine based on
supervised analysis (GENIES) is a web server to
predict unknown part of gene network from
various types of genome-wide data in the frame-
work of supervised network inference. The original-
ity of GENIES lies in the construction of a predictive
model using partially known network information
and in the integration of heterogeneous data with
kernel methods. The GENIES server accepts any
‘profiles’ of genes or proteins (e.g. gene expression
profiles, protein subcellular localization profiles and
phylogenetic profiles) or pre-calculated gene–gene
similarity matrices (or ‘kernels’) in the tab-delimited
file format. As a training data set to learn a predict-
ive model, the users can choose either known mo-
lecular network information in the KEGG PATHWAY
database or their own gene network data. The user
can also select an algorithm of supervised network
inference, choose various parameters in the
method, and control the weights of heterogeneous
data integration. The server provides the list of
newly predicted gene pairs, maps the predicted
gene pairs onto the associated pathway diagrams
in KEGG PATHWAY and indicates candidate genes
for missing enzymes in organism-specific metabolic
pathways. GENIES (http://www.genome.jp/tools/
genies/) is publicly available as one of the genome
analysis tools in GenomeNet.

INTRODUCTION

Most biological functions involve the interactions between
genes and proteins, and the complexity of biological
systems arises as a result of such interactions. A challenge

in recent genome science is to computationally predict the
systemic functional behaviours of genes and proteins from
genomic and molecular information for industrial and
other practical applications. Recent developments of
biotechnologies, such as transcriptomics and proteomics
technologies, contribute to an increasing amount of
high-throughput data for genes and proteins. Those het-
erogeneous data can be useful sources to infer the biolo-
gical networks on a large scale, and the usefulness of their
integration has been reported in various applications
(1–4). In this context, prediction methods of biological
networks, using all available data in genomics and other
omics experiments for a given organism, should be made
more easily accessible to biologists.

Many conventional prediction methods such as KAAS
(5) include the steps dependent on sequence similarity and
pre-defined pathway, therefore, these methods are not ap-
plicable when the involved genes do not have any sequence
similarity with other functionally characterized genes, and
these methods are not suitable to predict novel inter-
actions that have not been found in any other organisms.
In contrast, there are some previous studies that do not
depend on sequence similarity, enabling to predict a
gene network based on genomic and the other related
information (e.g. gene expression and phylogenetic
profiles). Examples of the algorithms include Bayesian
network (6,7), Boolean network (8), graphical Gaussian
modelling (9), graph overlapping (10) and mirror tree
(11), and these algorithms are categorized as unsupervised
approaches. There exist web servers that implement some
of the unsupervised methods, such as STRING (12) and
ASIAN (13). Compared to the unsupervised approach, the
supervised approach has been recently proposed to predict
gene network. A key idea of the supervised approach is to
use partially known network information in constructing a
predictive model, and the usefulness has been shown in
many recent studies. Examples of the algorithms include
kernel CCA (14,15), pairwise SVM (16), em-algorithm
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(17), local SVM (18) and kernel matrix regression (19).
However, to the best of our knowledge, no web servers
have implemented the supervised network inference
methods.

Here, we present gene network inference engine based
on supervised analysis (GENIES: http://www.genome.jp/
tools/genies/), a web server to predict unknown part of
gene network from various types of genome-wide data
(e.g. gene expression, gene position, subcellular localiza-
tion and phylogenetic profiles) in the integrated frame-
work of supervised network inference. Figure 1 shows
an overview of the GENIES. The method is suitable for
predicting unknown part of gene network, especially for
predicting genes for missing enzymes in metabolic
pathways.

RATIONALE AND IMPLEMENTATION

Data integration

In GENIES, each data set about genes or proteins is trans-
formed into the kernel similarity matrix (e.g. correlation
coefficient matrix) using a kernel function, where each
element in the matrix corresponds to a gene–gene similar-
ity. Multiple kernel similarity matrices generated from het-
erogeneous data sets are integrated into a single one by
taking a linear combination of the kernel similarity
matrices (the sum of the matrices with same weights as

default), which gives an integrated kernel similarity
matrix representing gene–gene similarities.

Direct network inference

The most straightforward approach to network inference
is a similarity-based approach, assuming that functionally
related gene pairs are likely to share high similarity with
respect to the given data set. Intuitively, the kernel simi-
larity value can often be considered as a measure of asso-
ciation between two genes. Pairs of genes are regarded to
interact (represented as edges) whenever the kernel simi-
larity value between the genes is above a threshold, which
is referred to as ‘direct approach’.

Supervised network inference

Supervised network inference involves two processes: a
training process where a mapping of all genes to a
low-dimensional space is learned by exploiting the
partial knowledge of the network, and a test process
where new edges are inferred. The test process is basically
the same as the direct approach performed after genes are
mapped to the low-dimensional Euclidean space,
i.e. closely located gene pairs are connected. The inner
product of the feature vectors between genes in the
low-dimensional space is used as the prediction score.
Pairs of genes are regarded to interact whenever the pre-
diction score between the genes is above a threshold,
which is referred to as ‘supervised approach’. There are

Heterogeneous input data such as:
gene expression

gene position in the genome

Integrated matrix

Supervised 
learning

Knowledge of pathways 
as the training data

phylogenetic profile

New relation

Alternative 
path

Missing
enzyme

Gene Network

Graphical association matrix

Known network

Newly predicted network

Missing
enzyme

Figure 1. Overview of GENIES.
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several algorithms to find an appropriate mapping
function in the training process, such as kernel CCA
(14,15), pairwise SVM (16), em-algorithm (17), local
SVM (18) and kernel matrix regression (19). Most of
the algorithms are implemented in GENIES, but the
SVM-based methods are not implemented because of the
prohibitive computational cost and the huge memory con-
sumption in the training phase. The kernel matrix regres-
sion is the default algorithm in GENIES because of its
computational efficiency, but other algorithms (penalized
kernel matrix regression, em-algorithm and kernel canon-
ical correlation analysis) can be chosen by the users in
practice.

USER INTERFACE AND BASIC FUNCTIONS

The possible inputs of GENIES are any data sets about
genes or proteins that are represented as the text files
either in the form of the tab-delimited profile matrix or
kernel similarity matrix predefined by the user. For
example, suppose that we are given three profile
matrices: gene expression, subcellular localization and
phylogenetic profiles. Gene expression profiles can be
regarded as a real-valued profile matrix, where the rows
represent genes and the columns represent experiment
conditions or time series. Subcellular localization profiles
can be regarded as a binary profile matrix, where the rows
represent gene products and the columns represent
subcellular compartments (e.g. Golgi, endoplasmic reticu-
lum). The presence or absence of each gene product is
coded as 1 or 0, respectively, across different subcellular
compartments. Phylogenetic profiles can be regarded as a
binary profile matrix, where the rows represent genes and
the columns represent fully sequenced organisms. The
presence or absence of each orthologous gene is coded
as 1 or 0, respectively, across the different organisms.
KEGG gene IDs are accepted for the input data so that
the genes can be mapped onto the KEGG PATHWAY
maps, and some input examples are provided in the help
page (http://www.genome.jp/tools/genies/help.html (9
May 2012, date last accessed)).
The output of GENIES is a weighted graph with genes

as nodes and prediction scores as edges, provided in
the following ways (Figure 2): Pathway list, Inferred
list, Search and Download (An example can be
seen at http://www.genome.jp/tools-bin/genies?mode=
path&id=example (9 May 2012, date last accessed)).
The first option, Pathway list, outputs the predicted inter-
actions grouped into KEGG PATHWAY (20) maps.
When one of the pathways is selected by the user, the
genes that are predicted to interact with the other genes
in the selected pathway will be highlighted. The second
option, Inferred list, provides the predicted interaction
pairs categorized into training versus prediction (TP), pre-
diction versus prediction (PP) and training versus training
(TT), where ‘training’ and ‘prediction’ mean the genes that
are found and not found in KEGG PATHWAY, respect-
ively. The third option, Search, enables the user to search
for genes that are predicted to interact with the genes of
interest. This option is useful for finding possible missing

enzyme genes: the user can use the KEGG PATHWAY
maps that contain the missing enzyme in the organism of
interest. The last option, Details & Download, provides
the list of the predicted gene pairs downloadable as a
tab-delimited text file, which can be viewed using
visualizing software like Cytoscape (http://www
.cytoscape.org/ (9 May 2012, date last accessed)) (21).

The workflow of GENIES is illustrated in Figure 3.
Simple mode is provided for the users who want to try
and see the results with the default settings. In the simple
mode, profile matrices are converted into the kernel simi-
larity matrices by linear kernel, all kernels are integrated
with the same weight, and supervised learning by kernel
matrix regression is performed using KEGG PATHWAY
as the training network data. After obtaining the predic-
tion result, the details of the default settings can be
checked and can also be modified to perform the predic-
tion again with different parameters (as indicated in the
dotted arrow). In the Advanced mode, the users can
choose the direct or the supervised approaches (although
we recommend using the supervised approach for
associating uncharacterized genes with known
pathways). The Advanced mode provides the choices of
the kernel functions, the choices of the network inference
algorithms, the choices of training network data and some
parameters in the algorithms. In the default settings, mo-
lecular network information in KEGG PATHWAY is
used as the training network data, although the users
can use their own network represented as the adjacency
matrix of the genes.

PERFORMANCE EVALUATION

The validity of the supervised network inference algorithms
has been already shown in many previous works (14–19).
Here, we tested GENIES on its ability to predict missing
enzyme genes in the metabolic pathways of budding yeast
(Saccharomyces cerevisiae) from the integration of three
genomic data sets, i.e. gene expression profiles, subcellular
localization profiles and phylogenetic profiles, with the
same weight. Enzyme genes with known pathway informa-
tion are referred to as ‘pathway genes’ below. We used
the 668 pathway genes taken from the KEGG database
as the gold standard data and used the remaining 5332
genes in the budding yeast as candidate data.

We conducted a self-rank test by Jack-knife type
(leave-one-out) cross-validation, following the previous
work (22). The procedure of the self-rank test is as
follows: (i) we take one pathway gene out of the 668
pathway genes on metabolic pathways and regard it as a
missing enzyme, (ii) we compute the candidate score for
5332 candidate genes and the pathway gene being tested,
(iii) we rank the pathway gene based on the candidate
scores among 5332 candidate genes plus itself (5332+1)
and (iv) we repeat the above steps for all the pathway
genes. A self-rank of 1 is a perfect prediction, indicating
that the method is able to assign the test pathway gene to
the original position in the pathway. In the case of random
prediction, the self-rank follows the uniform distribution
on the interval from 1 to 5333.
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Figure 2. Output example of GENIES. (a) Pathway list shows the predicted gene–gene interactions grouped based on the KEGG PATHWAY maps.
(b) Inferred list classifies the gene–gene network into training–prediction (TP), prediction–prediction (PP) and training–training (TT), where ‘training’
and ‘prediction’ mean the genes found and not found in the KEGG PATHWAY maps, respectively. (c) Search option enables the user to find the
gene of interest by inputting the gene name or by using the KEGG PATHWAY maps. (d) Tab-delimited files can be downloaded.
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Figure 4 shows the distributions of the computed
self-ranks for 668 pathway genes, where the left
panel corresponds to the random prediction (see
Supplementary Materials, http://web.kuicr.kyoto-u.ac.jp/
supp/kot/nar2012/ (9 May 2012, date last accessed)), the
middle panel corresponds to the direct approach and the
right panel corresponds to the supervised approach. Kernel
matrix regression was used as a default algorithm. In both,
the direct approach and supervised approach, the self-rank

distributions have a large peak at high ranks at a significant
level (the P-value is almost zero), which means that
GENIES is capable of predicting most known pathway
genes correctly. The supervised approach usually outper-
forms the direct approach when pathway information for
many genes is known. The direct approach is computation-
ally efficient and it may perform better when little genes are
associated with pathway information. Additional cross-
validation experiments show the similar tendency
(see Supplementary Materials, http://web.kuicr.kyoto-u.
ac.jp/supp/kot/nar2012/ (9 May 2012, date last
accessed)). These results suggest that potential missing
enzyme genes tend to be strongly correlated with the
adjacent enzymes on metabolic pathways in terms of suc-
cessive reactions. The computational cost depends on the
numbers of genes; it roughly takes 20min to calculate the
networks consisting of about 6000 genes. Downloadable
software’s are available upon request.

CONCLUSIONS AND FUTURE DIRECTION

GENIES enables the users to predict unknown part
of gene network on a genome-wide scale and suggest
potential associations between uncharacterized genes and
known pathways in the framework of supervised network
inference. The algorithms for supervised network infer-
ence have been presented in the previous publications
(15), but this is the first paper for presenting the web
server. One of the advantages of the server is the flexibility
of the input data, which provides significant potential to
analyse gene network in various aspects. As an example,
we showed an application of using gene expression,
subcellular localization and phylogenetic profiles, but the
users can input any other kinds of data as long as they are
represented in the form of profile matrices or similarity
matrices. This web server aims at providing a network
inference tool for general use; however, it would be
valuable to re-design it for more specific use, such as pre-
dicting missing enzyme genes in metabolic pathways. For
example, we showed the predictive power of our method
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Figure 4. Self-rank test for predicting missing enzyme genes.

Figure 3. The workflow of GENIES.
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for identifying missing enzymes that were not even classi-
fied in the Enzyme List (EC numbers) yet (23). We have
been also developing other web servers that are specialized
for predicting reaction pathways of given metabolites (24)
and for predicting potential EC numbers for given sub-
strate–product pairs (25,26), both of which are solely
based on chemical structures. Integration with these
chemistry-based methods would enhance GENIES to
provide more powerful and specialized method for recon-
structing large-scale metabolic networks dealing with
gene–metabolite associations.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Materials.
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