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ABSTRACT

The main feature of global repeat map (GRM) algo-
rithm (www.hazu.hr/grm/software/win/grm2012
.exe) is its ability to identify a broad variety of
repeats of unbounded length that can be arbitrarily
distant in sequences as large as human chromo-
somes. The efficacy is due to the use of complete
set of a K-string ensemble which enables a new
method of direct mapping of symbolic DNA
sequence into frequency domain, with straightfor-
ward identification of repeats as peaks in GRM
diagram. In this way, we obtain very fast, efficient
and highly automatized repeat finding tool. The
method is robust to substitutions and insertions/de-
letions, as well as to various complexities of the
sequence pattern. We present several case studies
of GRM use, in order to illustrate its capabilities:
identification of a-satellite tandem repeats and
higher order repeats (HORs), identification of Alu
dispersed repeats and of Alu tandems, identification
of Period 3 pattern in exons, implementation of
‘magnifying glass’ effect, identification of complex
HOR pattern, identification of inter-tandem tran-
sitional dispersed repeat sequences and identifi-
cation of long segmental duplications. GRM
algorithm is convenient for use, in particular, in
cases of large repeat units, of highly mutated and/
or complex repeats, and of global repeat maps for
large genomic sequences (chromosomes and
genomes).

INTRODUCTION

Repetitive DNA sequences are of increasing importance
because of their regulatory role and the role as one of
principal factors for evolutionary development (1–16).

Therefore, their identification and analysis are currently
of substantial interest.
Eukaryotic genomes are characterized and often

dominated by repetitive sequences. More than 50% of
the human genome is made up of repeats (17). Different
types of repeats in DNA can be classified as tandem
repeats, dispersed repeats, equidistant repeat copies
separated by spacers, segmental duplications and
complex repeats (18–28). According to the length of
repeat units, tandem repeats can be classified as microsat-
ellites (1 to �6 bp), minisatellites (�6 to �100 bp), satel-
lites (�100 bp to �2 kb) and macrosatellites (>�2 kb); the
thresholds between different classes of satellites may vary
in different authors. Repeats are mostly approximate, con-
taining nucleotide substitutions, insertions and/or dele-
tions with respect to consensus.
There is a vast range of algorithms for repeat detection

(partial survey of list of references on algorithms from
plethora of repeat finding methods is given in Supple-
mentary Table S1). For reviews of repeat algorithms, see
for example (29–42). A broad scope of various algorithms
reveal both the complexity of challenges posed by this
enormous task and, in spite of significant advances
achieved so far, there still remains limitations and high
potential for improving efficiency.
Some of repeat finding algorithms are designed specif-

ically for identification of tandem repeats or of dispersed
repeats, or of both. Of particular interest are ab initio
programs that in the repeat identification process do not
rely upon previously known repeats.
In order to extract the mathematical and statistical

information embedded in symbolic DNA sequences,
one can use the powerful analysis tools developed in
traditional signal processing, such as Fast Fourier
transform, wavelet transform and correlation function
technique. In that case one must map the symbolic
elements into numerical values. Numerous mappings
of symbolic DNA into numerical sequences have been
proposed, for example (43–52). However, there appears
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a question whether some result is an inherent property
of symbolic data or just an artefact of numerical
mapping.
Tandem repeat detection algorithms can be broadly

assigned to two main categories: flexible statistical string
matching algorithms [e.g. (30,32,42,53–60)] and signal
processing algorithms [e.g. (45,61–74)]. As pointed out
(42), the most often used tandem repeat detection algo-
rithms are Tandem Repeat Finder (TRF) (30) and
Spectral Repeat Finder (SRF) (69). The TRF is based
on string matching and the use of a probabilistic model
of tandem repeats with statistically based recognition
criteria (30). Some ideas incorporated in TRF have been
used in earlier homology detection program BLAST (75),
but the goals and methods differ (30). The signal process-
ing algorithm SRF maps a given genomic sequence into
numerical sequence which is analysed by discrete Fourier
transform (69).
Various problems related to the use of available repeat

finding algorithms have been pointed out and partly
investigated, for example (30,34–39,42,76). Some of the
relevant results and discussions from these references
could be summarized as follows.
The TRF algorithm can have problems with repeats

containing sizeable substitutions and/or insertions/dele-
tions, with repeats having very large repeat units
(>2 kb), or giving several possible repeat structures of
the same sequence. On the other hand, the SRF algorithm
can produce numerical artefacts and poor resolution of
spectral analyses.
The problem of repeat finding and analysis is very

complex and has many facets, primarily because of ap-
proximate nature of repeats (different algorithms can
exhibit different degree of robustness for various types
of repeats) and because of uncertainties introduced by
arbitrarily defined threshold (regions detected as repeats
are those whose alignment is higher than a given
threshold—larger threshold sizes can prevent detection
of more tandem repeats). For example, different algo-
rithms applied to a given genomic sequence with higher
order structures can sizeably differ in what is detectable
repeat structure, as primary repeat or higher order repeat
(HOR). In general, significant differences may appear
among different algorithms; some approaches identify
repeats that are missed by some other approaches; some
algorithms can detect more divergent repeats than the
other. As for recognition of tandem repeats, it was sug-
gested that the average number of tandem repeats found
in a set of random sequences could serve as a value for
background noise produced by chance occurrence of
tandem repeats. For algorithms with user-defined param-
eters, the choice of parameter values can influence the
results for identified repeats. Also, a major drawback of
many computational algorithms, when running against
very long sequences, can be that they produce a large
amount of cumbersome results, which require a painstak-
ing interpretation. It was pointed out that in addition to
the use of better and faster algorithms for repeat finding,
the use of combined results from several different algo-
rithms holds promise.

Investigations comparing different repeat finding
algorithms have been made for some sequences [e.g.
(34–39,76,77)]. For example, testing five commonly used
repeat finding programs (TRF, Sputnik, Mreps,
RepeatMasker and STAR) across several eukaryotic
genomes, it was found major divergence in the repeats
detected, depending on the program, and more
significantly, depending on parameter setting selected
(34). A meta-analysis on published distribution in yeast
showed divergence of up to several orders of magnitude
in the frequency of microsatellite motifs reported among
seven studies. A bias depending on the algorithm
employed was found, mainly in number of repeats
detected, size classes identified and length distribution
(36). Each method has its own limitations, revealing a
need for the development of newer methods to overcome
more limitations (77).

The increased availability of sequenced genomes as well
as the increasing recognition of biological importance of
repetitive elements motivates the development of more
sensitive and effective algorithms for ab initio repeat
discovery and characterization. In light of profound vari-
ation in performance of currently available ab initio repeat
finders as well as the situation that each of many available
algorithms has some advantages and disadvantages, there
remains substantial room for improvement and develop-
ment in algorithms for detection and characterization of
novel repeats. It was pointed out that there are many ways
how the computational identification and characterization
of repeat sequences could be improved by creation of
more efficient, sensitive, selective and faster algorithms,
as well as by combination of results from several different
algorithms. Taking all these aspects into account, in spite
of significant progress made so far, the repeat finding
programs are still a challenge.

In previous application of initial restricted version of
GRM algorithm (restricted to 100 kb fragment lengths),
we identified repeats in human chromosomes 1 and Y
(Build assemblies). We reproduced previously known
repeats, and in addition we discovered a dozen of novel
repeats (78,79). In this article we extend the software of
GRM algorithm (new source code www.hazu.hr/grm/
tools.html#grm2012) to be able to treat as large genomic
sequences as hundreds of megabases and we formulate this
model in a general framework incorporating crucial
elements from both the digital signal processing and the
string matching approaches. As will be presented and dis-
cussed in this article, the novelty of GRM approach is a
direct mapping of symbolic DNA sequence into frequency
domain using complete K-string ensemble instead of stat-
istically adjusted individual K-strings optimized locally. In
this way, we show that the GRM provides a straightfor-
ward identification of DNA repeats using frequency
domain, but avoiding mapping of symbolic DNA
sequence into numerical sequence, and uses K-string
matching, but avoiding statistical methods of locally
optimizing individual K-strings (Figure 1). We also
present a set of case studies of various types of repeats
in human genome in order to demonstrate efficacy and
robustness of GRM.
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MATERIALS AND METHODS

Single K-string spacing and frequency arrays for a given
genomic sequence

Concerning the encoded information, the DNA sequence
can be treated as 1D symbolic sequence made of four
letters A, C, G and T, representing the 4 nt. A K-string
(also called k-word, k-mer, k-tuple, seed or key string)
is a sequence of K nucleotides, i.e. a symbolic sequence
of K elements from four-letter alphabet {A, C, G, T}
(30,38,39,81–84):

sKðjÞ ¼ �1 K,jð Þ�2 K,jð Þ . . .�K K,jð Þ, j ¼ 1, 2, . . . ,4K,

where �i K,jð Þ stands for a nucleotide (A, C, G or T) at the
ith position in the jth K-string. There are 4K different
K-strings. The set of all K-strings sKðjÞ will be called the
K-string ensemble, denoted EK. The ordering of K-strings
in EK is chosen arbitrarily and is of no significance for
mapping.

In a given genomic sequence of length L, all exact
matches are determined separately for each single
K-string sKðjÞ, i.e. for each j from j=1 to j=4K (schemat-
ically shown in Figure 2), by sliding the window across the
sequence in steps of 1 nt. This starting point of GRM is
analogous as in standard string matching approaches (30).

Using for example an ensemble of 48 K-strings corres-
ponding to K= 8, we align with each K-string consecu-
tively sub-sequences from Position 1 to 8, from 2 to 9,
from 3 to 10, etc., recording for each K-string the start
position each time when an 8-bp sub-sequence from
genomic sequence and the 8-bp K-string match.

Denote the start positions of exact matches of each
K-string sKðjÞ,(i.e. for a fixed j) by:

xK jð Þ
� �

¼ xK jð Þ½ �1, xK jð Þ½ �2, xK jð Þ½ �3, . . . xK jð Þ½ �n,

xK jð Þ½ �n+1, . . . j ¼ 1, 2, . . . , 4K:

For each fixed j, the first match of sKðjÞ starts at a
position denoted xK jð Þ½ �1, the second match of sKðjÞ at a
position denoted xK jð Þ½ �2, etc. In this way, for each
K-string we obtain a sequence xK jð Þ

� �
of start positions

of the corresponding exact matches.

A spacing between start position of the nth match and
(n+1)th match is

dK jð Þ½ �n¼ xK jð Þ½ �n+1� xK jð Þ½ �n, n ¼ 1, 2, 3, . . .

While in the standard heuristic approach the distances
between K-string matches are treated by statistical criteria
and are used for estimate of best K-string (30), in GRM we
use these distances for transformation of symbolic DNA
sequence into frequency domain. To this end let us
consider an array of all spacings dK jð Þ½ �n, corresponding
to the jth K-string sKðjÞ from K-string ensemble EK:

dK jð Þ
� �

¼ dK jð Þ½ �1, dK jð Þ½ �2, dK jð Þ½ �3, . . . j ¼ 1, 2, . . . , 4K:

Such spacing array for a single K-string will be referred
to as a single-K-string spacing array [called key string
distance array in (78,79,83,85,86)].
An example of a single-K-string spacing array for three-

string GGC and an illustrative genomic sequence is shown
in Table 1 and Figure 2.
Each spacing dK jð Þ½ �n in a single-K-string array dK jð Þ

� �

for a fixed j is equal to an integer number of base pairs.
Let us denote by fK jð Þ½ �

ð1Þ the number (i.e. frequency) of
appearance of all single-K-string spacings dK jð Þ½ �n that
are equal to 1 bp; by fK jð Þ½ �

ð2Þ the frequency of all single-
K-string spacings dK jð Þ½ �n equal to 2 bp, . . . by fK jð Þ½ �

ð�Þ the
frequency of all single-K-string spacings dK jð Þ½ �n equal to �
bp, . . . In this way, for each spacing length we obtain the
corresponding frequency of appearance by counting how
many times this spacing length appears in the spacing
length sequence. A single-K-string frequency array is con-
structed for each of the 4KK-strings:

fK jð Þ
� �

¼ fK jð Þ½ �
ð1Þ, fK jð Þ½ �

ð2Þ, . . . fK jð Þ½ �
ð�Þ, . . .

j ¼ 1,2, . . . , 4K:

K-string ensemble frequency array for a given genomic
sequence

In the next step we superpose all 4Ksingle-K-string fre-
quency arrays of all K-strings from the K-string

Figure 1. Basic scheme of GRM in comparison to basic schemes of TRF (30) and SRF (69).
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ensemble. In this way we obtain the K-string ensemble
frequency array of a given genomic sequence:

fKðEÞ
� �

¼
XN

j¼1

fK jð Þ½ �
ð1Þ,

XN

j¼1

fK jð Þ½ �
ð2Þ, . . .

XN

j¼1

fK jð Þ½ �
ð�Þ,

where N=4K.
This frequency array, computed for a given genomic

sequence using the K-string ensemble EK, provides a
discrete frequency spectrum versus spacing length m:

PN

j¼1

fK jð Þ½ �
ð1Þis the frequency of superposed spacings of

length 1 bp,
PN

j¼1

fK jð Þ½ �
ð2Þis the frequency of superposed spacings of

length 2 bp,
PN

j¼1

fK jð Þ½ �
ð�Þis the frequency of superposed spacings of

length �bp.

In summary regarding frequency array, each K-string
from EK ensemble is moving in steps of 1 nt along the
genomic sequence. Thus, we align successively each K-
string to sub-sequences from Position 1 to K, from 2 to
K+1, from 3 to K+2 , . . . in a given genomic sequence,
recording start position each time when a K-bp
sub-sequence and a K-string fully match. In this way, for
each K-string from the EK ensemble we obtain a sequence
of key string start positions within genomic sequence. In
this way the genomic sequence is for each K-string separ-
ately segmented into fragments. Each fragment is equal to
spacing between start positions of the two neighbouring
matches of the same K-string. Such spacing is referred to
as fragment length. For each fragment length and each
K-string, the corresponding frequency of appearance is
determined by counting how many times this fragment
length appears in the fragment length sequence along a
given genomic sequence. Superposing frequencies of ap-
pearance of fragment lengths for all K-strings in the

ensemble, we obtain the frequencies of fragment lengths
1 bp, 2 bp, 3 bp, . . .This set of frequencies represents the
map of genomic sequence in the frequency domain.

Global repeat map diagram in frequency domain as
repeat finder

Using K-string ensemble EK, we obtain the mapping
fKðEÞ
� �

of a given symbolic sequence (genomic sequence)
into frequency domain. Diagrammatic presentation of this
frequency dependence is referred to as global repeat map
(GRM).

Using the K-string ensemble approach in GRM, we
compute efficiently the frequency map of genomic se-
quences as large as human chromosomes using our
computer code grm2012 with K= 8, which gives results
corresponding to the previous GRM computer program
from (78,79) that was previously not fully automatized
and restricted to maximum fragment lengths of 100 kb,
i.e. the maximum distance between start positions of
neighbouring repeat copies of 100 kb.

Here we develop the computer program grm2012 which
is highly automatized and extended to fragment lengths as
large as hundreds of mega base pairs, which is of particu-
lar importance for identification of segmental duplica-
tions. (Initial version of GRM (78,79) (source code
grm2011) was restricted to fragment lengths up to
100 kb.)

With regard to biological significance of frequency
peaks in GRM diagram, from the construction method
it is apparent that the corresponding fragment length
(spacing length) at position of each frequency peak is
equal to a distance between starts of the neighbouring
repeat copies. We find three possible GRM situations:

(1) In the case of dispersed repeats, the fragment length
is equal to a distance between start positions of
dispersed repeat copies. Such repeats that can be
identified using GRM algorithm are, for example,
LINEs, SINEs and segmental duplications. GRM
can quickly detect segmental duplications at dis-
tances as large as hundreds of mega base pairs. We
also found that GRM detects each Alu copy, thanks
to the internal structure of Alu, which consists of
two approximately homologous sub-sequences
separated by a short spacing, and also detects each
tandem of Alus.

(2) In the case of tandem repeats, a fragment length ob-
viously corresponds to the repeat unit length, equal

Figure 2. Illustration of exact matches of a single K-string and the corresponding spacings. The single K-string GGC is assigned to j=42 within the
three-string ensemble {sK jð Þ,j ¼ 1,2,3,:::64} of all 43 possible 3-strings of the length 3: sK jð Þ ¼ s3 42ð Þ ¼ GGC.

Table 1. Match positions and spacings corresponding to schematic

genomic sequence from Figure 2 using single-three-string s3 = GGC

x3ð42Þ½ �1¼ 3 d3ð42Þ½ �1¼ x3ð42Þ½ �2� x3ð42Þ½ �1¼ 6� 3 ¼ 3
x3ð42Þ½ �2¼ 6 d3ð42Þ½ �2¼ x3ð42Þ½ �3� x3ð42Þ½ �2¼ 26� 6 ¼ 20
x3ð42Þ½ �3¼ 26 d3ð42Þ½ �3¼ x3ð42Þ½ �4� x3ð42Þ½ �3¼ 38� 26 ¼ 12
x3ð42Þ½ �4¼ 38

dKð42Þ
� �

¼ 3,20,12
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to distance between starts of neighbouring repeat
copies. In this way, the GRM algorithm provides a
very efficient tool to detect tandem repeats and
HORs.

(3) In the case of complex repeats, such as intertwined
repeats, or dispersed repeats with regular spacings
and/or sizeably distorted pattern, several fragment
lengths can form a complex geometrical pattern in
the corresponding GRM diagram, which reveals the
underlying repeat pattern.

Identification and analysis of repeats corresponding to
each GRM peak

Using the computer code grm2012 in the first step (‘iden-
tification step’) selecting significant pronounced peaks, we
identify significant GRM fragment lengths (i.e. repeat unit
lengths of tandem repeats and/or spacings between
dispersed repeat copies). In the second step (‘analysis
step’), for each significant fragment length (corresponding
to a GRM peak), using grm2012 code we determine the
corresponding repeat sequences and its positions, the con-
sensus repeat unit and divergence of repeat copies with
respect to each other and to consensus. The basic point
is the use of dominant K-string associated with a GRM
peak (fragment length). The dominant K-string for a par-
ticular fragment length m is the one sKðjÞ among the
4KK-strings in the EK ensemble with highest frequency
for this fragment length: max fKðjÞ

ðmÞ
� �� �

. In computer
program grm2012 it is selected automatically from the
stored set of frequencies fKðjÞ

� �
for each fragment length

in the first step of GRM peak identification. To each
GRM peak its particular dominant K-string corresponds,
determined automatically in this way.

RESULTS AND DISCUSSION

Case study: GRM diagram for human chromosome 7 and
identification of a-satellite tandem repeats and HORs

a-Satellite DNA, which consists of tandem repetitions of
�171 bp repeat unit (called a monomer), is the major con-
stituent of primate centromeres. In humans, a large
fraction of a-satellite monomers is arranged into HORs)
Individual human a-satellite monomers mutually diverge
by 20–40%, while the sequence divergence between HOR
copies is <5% and often even <2% (19,59,81,85–92). As
an illustration of GRM identification of a-satellite
monomers and HORs, we present the GRM diagram for
human chromosome 7 using the 8-bp K-string ensemble
(Figure 3). A strong peak at fragment length �171 bp cor-
responds to a-satellite monomer repeat unit of �171 bp.
Peaks at its multiples (�2� 171 bp, �3� 171 bp,
�4� 171 bp, . . . ), decreasing with increasing multiple
order, correspond to tandem repeats of �171 bp a-satel-
lite monomers. In addition to this multiple pattern, there
is a strong peak at 2734 bp, corresponding to consensus
HOR length. This peak reveals higher order structure of
a-satellite organization: 16 (2734 bp/171 bp& 16)
tandemly arranged a-satellite monomers, which mutually
diverge by 20–40%, are arranged into more homogenous

second-order units. The high homogeneity of second order
units, as well as relatively high heterogeneity of primary
repeat units, is reflected in GRM diagram with a charac-
teristic pattern of HOR-signature.

Case study: identification of Alu dispersed repeats and
2-Alu tandems in human chromosome 7

The most abundant dispersed repeats in humans and other
primates are Alu elements. The human genome contains
>1.1 million dispersed Alu elements. Alu elements have
the highest copy number of all of the human mobile
elements. They occur at an average of one every 3–6 kb,
but distribution within the human genome is not uniform
(9).The structure of each Alu element is bi-partite: it is a
dimer of two approximately similar monomers; the
30-monomer contains an additional 31-bp A-rich insertion
relative to the similar 50-monomer (Figure 4a) (9,92).
Monomers are separated by a middle A-rich region that
contains the sequence A5TACA6. Thus the body of an Alu
element is �282 bp long. Due to similarity between two
monomers constituting an Alu element, the distance
between the starts of parts M1 and M10 is 135 bp, which
gives rise to the GRM peak at 135 bp, while the distance
between the starts of parts M2 and M20 is 135 bp+length
of insertion I=166 bp, which gives rise to the GRM peak
at 166 bp (Figure 5a and b). In this way, the two GRM
peaks, at 135 and at 166 bp, are signature of dispersed
Alus (Figure 5b). Each Alu element in the genomic
sequence under study contributes to these peaks. Thus,
the height of peaks at 135 and 166 bp increases with
increasing number of Alu copies in genomic sequence.
From the scheme in Figure 4a, it is seen that the incom-
plete Alu fragments <135 bp cannot be presented as GRM
peaks, because the shortest distance between two similar
Alu sub-segments is >135 bp.
The basic Alu dimer is flanked by a poly-A tail at its 30-

end. This poly-A tail can be a perfect A repeat of variable
lengths, from a few bases up to a hundred bases long,
occasionally interspersed with other bases (93,94).
Sequence composition of Alu poly-A tail constructs
contains, for example, A10, A20, A30, A40, A50, . . . .
The total length of each Alu-sequence is a sum of a
basic Alu dimer of �282 bp and the widely scattered
length DA of the 30 poly-A tail (Figure 4a). This sum is
referred to as �300 bp.
An additional GRM peak appears in the case when two

Alu elements form a tandem in a genomic sequence
(Figure 5a and c). The distance between the starts of the
first and of the second Alu element is 282+DA(1), where
DA(1) denotes the length of poly-A tail in the first Alu
element (on the left hand side). As the length of A-tail
differs in a wide range among Alus, for many different
pairs of Alus within a chromosome the distance between
the two Alu elements within a tandem can differ by dozens
of base pairs and therefore the GRM peak corresponding
to a 2-Alu tandem for a whole human chromosome 7
sequence is broadened over dozens of base pairs above
the 282-bp fragment length (Figure 5a, and its magnified
segment, Figure 6). A broad GRM peak is seen in the
interval of A-tail lengths from �4 to �50bp (towards still
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higher fragment lengths the tail of this peak is shadowed by
the emerging a-satellite peak �2� 171bp=340bp). The
maximum height of this A-tail peak is at DA=28bp (fre-
quency �16 k), with an estimated half-width of �50bp
(frequency �8 k) extending in the interval of fragment
lengths from �285 to �335bp. The width of fragment
length interval exceeding three-fourth of maximum fre-
quency, i.e. 0.75� 16=12bp is � 24bp, from DA�15bp
to DA�39bp (Figure 6). This GRM analysis for A-tail
length distribution for the whole human chromosome 7 is
in accordance with direct results obtained for a selective

sample of Alus from chromosome 7: analysed Alu old
subfamilies S, J and young Ya5 had a distribution of
A-tail lengths with a mean size of 21 and 26bp, respectively
(21±8 and 26±9, respectively). For Alu J, S: minimum
length 1bp, maximum length 43bp; for Alu Ya5: minimum
length 2 bp, maximum length 59bp (93).

Case study: period 3 distinguishing human coding and
non-coding regions

The 3-nt periodicity in coding sequences was evidenced as
a sharp peak at frequency f= 1/3 in the corresponding

Figure 4. Schematic presentation of the origin of GRM peaks corresponding to dispersed Alu elements and to tandems of Alu elements. (a) Origin
of the 135 bp and 166 bp GRM peaks from each Alu element. The left constituent monomer of Alu is divided into two segments, M1 and M2. The
segments denoted M10 and M20 in the right monomer are similar to the segments M1 and M2 in the left monomer, respectively. In between the
segments M10 and M20 in the right monomer there is a 31-bp insertion, denoted I. Between the left and right monomer there is a short A-rich linker
denoted L. (b) Origin of the �300-bp GRM peak from each tandem of two Alu elements. The first Alu element, denoted Alu(1), consists of the
�282-bp main part (two constituent monomers and a linker) and of A-tail. The lengths of A-tail in the first and second Alu element are denoted
DA(1) and DA(2), respectively. The distance between the starts of the first and second Alu element is 282+DA(1). As the length of tail differs in a
wide interval of several dozens of bp, the distance between the two Alu elements in different dimers can differ by dozens of bp and therefore the peak
corresponding to a two-Alu tandem is broad.

Figure 3. GRM diagram for human chromosome 7 (Build 37.3 assembly). (a) fragment lengths up to 50 kb, (b) fragment lengths up to 3 kb. In
magnified section of GRM diagram (b) (interval 0–3000 bp fragment lengths) the peaks corresponding to fragment lengths at approximate multiples
n� 171 bp of a-satellite primary repeat unit are denoted by integers n. Pronounced peak at n= 16 corresponds to HOR consensus length of 2734 bp.
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Fourier spectrum, while in non-coding sequences such
peak is missing (45,61,63,69,95). Here we investigate
GRM results for the case study of coding sequences, in
comparison to non-coding sequences (Figure 7). As we are
interested in repeat units of 3 bp, the best GRM resolution

is obtained for the string length K=3. (The results for
K= 4 are quite similar.) From GRM diagrams we find
pronounced GRM peaks at 3 bp and their multiples in
most exons, while in non-coding sequences (i.e. in �99%
of human genome), the peak at 3-bp period is much
smaller or absent. Thus, in GRM diagrams for whole
human chromosomes (where non-coding sequences
strongly dominate) the frequency corresponding to
Period 3 is about three times smaller than the frequency
corresponding to Period 4, while in the coding sequences it
is the opposite. In non-coding regions, a pronounced
GRM periodicity is mostly 6. These GRM results are in
accordance with the pattern of previous results obtained
by using heuristic algorithms (96). We note that in digital
signal processing, such as Fourier transform, the
pronounced Period 3 peak appears due to hidden period-
icity as defined in (64), while in GRM the equidistant
peaks at periods 3n (n= 1, 2, 3,. . . . ) (Period 3 and their
multiples) are over-represented due to specific equidistant
arrangements of three strings.

‘Magnifying glass’ for GRM

Significant repeats in a given genomic sequence are easily
recognizable as pronounced peaks in GRM diagrams. For
less pronounced repeats that can be submerged in the
background of noise, we can use computational ‘magnify-
ing glasses’ for their identification, thus increasing the
resolution power of the method.
In GRM algorithm, the first ‘magnifying glass’ consists

simply in magnifying segments of fragment lengths in
GRM diagram, but without performing any additional
GRM computation for genomic sequence.
The second ‘magnifying glass’ consists in performing

additional GRM computations for smaller sub-segments
of genomic sequence. The accuracy of algorithm is
improved if we divide very long DNA sequences into
smaller sub-regions, which decreases the background of
noise and thus increases the accuracy of predictions, i.e.
smaller GRM peaks become visible above the background
of noise. For example, if a DNA sequence is 10Mb, we

Figure 5. GRM peaks corresponding to single Alus and tandems of
two Alus in human chromosome 7 in the interval of fragment lengths
from 100 to 400 bp. (a) GRM diagram is computed for the whole
sequence of human chromosome 7 from Build 37.3 assembly. In this
fragment length interval we see peaks at �135 bp and �166 bp corres-
ponding to all dispersed single Alu copies in chromosome 7. A broad
peak at �310 bp corresponds to all tandems consisting of two Alu
copies. Pronounced peaks at 171 and 340 bp correspond to the length
of a-satellite primary repeat unit and twice the length of primary unit
due to HOR structure. (b) GRM diagram computed for a 5-kb segment
of chromosome 7 (interval from position 2 765 000 to 2 770 000 in
contig NT_007741.14) encompassing one Alu element. In the interval
from 100 to 400 bp only two significant peaks appear, at �135 bp and
�166 bp, corresponding to the Alu element. (c) GRM diagram
computed for a 5-kb segment of chromosome 7 (interval from
position 2 620 000 to 2 625 000 in contig NT_007741.14) encompassing
one tandem of two Alu elements. In the interval from 100 to 400 bp
only three significant peaks appear, at �135 bp and �166 bp, corres-
ponding to each Alu element separately, and a narrow peak at �298 bp,
corresponding to the tandem of two Alu elements.

Figure 6. Magnified segment from Figure 5a containing interval of
fragment lengths with GRM peak of two-Alu tandems. Maximum of
the peak is at 310 bp. Therefrom we determine the corresponding A-tail
length as 310� 282 bp=28bp. Peaks corresponding to the A-tail
lengths 26 bp and 45 bp are also shown. To the right of this broad
peak, above the fragment length of �332 bp (i.e. above the A-tail
length of �52 bp), the broad peak is shadowed by pronounced GRM
peak corresponding to to twice the a-satellite monomer length with
maximum at 340 bp.
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can improve the accuracy of repeat identification by
dividing it in sub-sequences of 1Mb. In this way we
exclude from GRM diagram for each sub-segment the
peaks due to repeats lying outside of this sub-segment
and in this way we reduce the density of peaks, making
peaks corresponding to repeats in this sub-segment more
visible. This procedure is implemented into current source
code (grm2012). Identified repeats, which are stored in
associated *.txt file, are result of this ‘magnifying glass’
technique.
The third ‘magnifying glass’ consists of performing add-

itional GRM computation for randomized sequence of the
same nucleotide composition as in the real sequence and in
discarding all GRM peaks that lie below the threshold
defined by heights of GRM peaks for randomized
sequence.
We find that the background in GRM diagrams is

mostly small, thus allowing identification of most signifi-
cant GRM peaks (i.e. repeats) without the need for
increase of resolution.

We note that the general problem of ‘magnifying glass’
was pointed out previously in another framework, as for
example in the case of mreps algorithm with a resolution
parameter playing a role of ‘magnifying glass’ (57). In the
case of REPuter algorithm the user is also able to ‘zoom
in’ on the details of particular repetitive regions (97).

Case study: reduction of background noise for human
chromosome Y
As a case study for reduction of random background noise
from counting results, we compute the GRM diagram for
human chromosome Y (Build 37.3 assembly). The GRM
diagram computed for fragment lengths up to 25 kb is
shown in Figure 8a. For comparison, we compute GRM
diagrams for a set of 100 randomized sequences of the
same nucleotide composition as in human chromosome
Y and their mean GRM diagram (Figure 8b and c).
This mean of GRM diagram of randomized sequences is
used as a background noise produced by chance occur-
rence. For every fragment length from GRM diagram of

Figure 7. Illustration of low fragment length segment (1–10 bp) of GRM diagrams for some human exons, introns, chromosomes and human
genome (Build assembly). GRM diagrams at K=3 are shown for: (a) exons from DAZ1 gene in Y chromosome, (b) introns from DAZ1 gene
in Y chromosome, (c) 9 kb intergenic segment starting at position 1 kb distant from DAZ1 gene, (d) exons from Tubulin Tyrosine Ligase 10 gene in
chromosome 1, (e) introns from Tubulin Tyrosine Ligase 10 gene in chromosome 1, (f) 9 kb intergenic segment starting at position 1-kb distant from
Tubulin Tyrosine Ligase 10 gene in chromosome 1, (g) exons from hornerin gene in chromosome 1, (h) introns from hornerin gene in chromosome 1,
(i) 9-kb intergenic segment starting at position 1-kb distant from hornerin gene in chromosome 1, (j) chromosome 1, (k) chromosome Y and (l) whole
human genome.
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human chromosome Y, we discard each frequency that is
smaller than quadruple frequency of mean randomized
GRM diagram at that fragment length, by assigning the
value 0 to that frequency. Using this procedure we obtain
the GRM diagram with reduced background (Figure 8d)
and the peaks in this diagram are taken as significant.
Some magnified sections of GRM diagrams are presented
in Figure 8e and f. Increased mean GRM diagram
(Figure 8c) reveals exponential correlation between back-
ground noise frequency and fragment length. Correlation
between frequency and small fragment lengths in regular
GRM diagram (magnified section, Figure 8e) is also ex-
ponential. However, for small fragment lengths, the rate
of exponential decay in mean randomized GRM diagram
is much smaller than in regular GRM diagram, and as a
consequence, all small fragment length frequencies in
regular GRM diagram survive quadruple threshold test
(Figure 8f). This is, on the other hand, a consequence of
intrinsic characteristic of DNA sequence; the shorter a
sequence, the mechanism of its multiplication is more
efficient.

Case study: increasing resolution by GRM computations
for smaller sub-segments
As pointed out, the resolution power of GRM computa-
tion depends on the length of section of genomic sequence
computed in a single run. Fragmenting genomic sequence
into smaller sub-sections for GRM computations, the
level of background noise is rapidly decreasing. Already
for genomic segments of as much as 1Mb the level of
noise in computing GRM diagram is sufficiently low so
that we can clearly identify GRM peaks corresponding
significant repeats, even to those substantially mutated
and/or of low copy number. We find that the level of
noise in computed GRM diagrams is much lower than
in spectra obtained by Fast Fourier Transform.

As a case study for sensitivity of resolution power on
length of genomic sequence in GRM computation, we
present the GRM diagram computed for a sequence of a
complete long contig NT_032977.9 (length 91.3Mb) from
human chromosome 1 (Build 37.3) (Figure 9a). As seen, in
that case the resolution power is not sufficiently high in
GRM calculation to recognize a significant peak at
fragment length 902 bp. However, by separating this
contig into smaller segments of 10Mb and performing
GRM computation of each of them, we identify a
significant GRM peak at the fragment length of 902 bp
(Figure 9b). This GRM peak becomes even more
pronounced by further reducing the length of genomic
sequence for GRM computation to 1Mb (Figure 9c).

GRM identification of complex repeats

Case study: complex HOR pattern based on �2.4 kb
monomer in human Y chromosome
For human chromosome Y (Build 37.3) we compute the
GRM diagram in the interval of fragment lengths from 2
to 8 kb (Figure 10a). In that fragment length interval the
seven most pronounced GRM peaks are (in order of
decreasing frequencies) at 2385, 4757, 3579, 5607 and
7155 bp, respectively. Three of these peaks are nearly equi-
distant approximate multiples of the basic length l1:
2385 bp= l1, 4757 & 2 l1, and 7155 & 3 l1.
This indicates that the lengths of these three peaks cor-

respond to a tandem with basic repeat unit �2.4 kb, and to
the corresponding 2-mer and 3-mer HORs (78). This
straightforward prediction of GRM diagram is
investigated here as a detailed case study.
According to the general outlay of the GRM method,

first we determine which contig gives the main contribu-
tion to these three GRM peaks; we find that it is
NT_011903.12. Its GRM diagram in the interval from 2
to 8 kb fragment length is displayed in Figure 10b. In this

Figure 8. (a) GRM diagram for human chromosome Y with fragment lengths up to 25 kb. Some of pronounced peaks were discussed in (78).
(b) GRM diagram of mean of one hundred of randomized sequences of the same nucleotide composition and fragment length interval as for
Y chromosome in (a). (c) Mean randomized GRM diagram from (b) extended to a larger fragment length interval (up to 100 kb). (d) GRM diagram
from (a) with reduced background. Frequencies lying below the threshold defined by the quadruple mean randomized background from (b) are set to
null. (e) Magnified section of GRM diagram from (a) in the fragment length interval up to 500 bp. (f) Magnified section of GRM diagram with
reduced background from (d) in fragment length interval up to 500 bp.

PAGE 9 OF 17 Nucleic Acids Research, 2013, Vol. 41, No. 1 e17

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/41/1/e17/1160858 by guest on 24 April 2024



GRM diagram there are only three significant peaks in the
interval from 2 to 8 kb, at 2385 bp, 4757 bp and 7155 bp,
corresponding to the equidistant lengths based on �2.4 kb
monomer. The dominant key string for the 2385-bp
fragment length is TATTTTTA. The corresponding
GRM peaks are associated with monomers of close-lying
lengths 2385 bp, 2384 bp, 2376 bp, 2377 bp, 2380 bp,
2404 bp etc., centred at 2385 bp (monomer of highest fre-
quency). On the basis of mutual divergence these
monomers can be classified into five different families,
taking the 3% upper limit of divergence between
monomers of the same family. For each family the corres-
ponding consensus length is determined. These five
monomer families are denoted as m01 (2446 bp), m02
(2404 bp), m03 (2376 bp), m04 (2375 bp) and m05
(2385 bp) (consensus lengths in parentheses). The
monomer family with highest frequency of appearance is
m05. For each of five monomer families we determine the
corresponding consensus sequence. Consensus sequences
of different families differ mutually by �13%.
In order to demonstrate that the �2.4-kb monomer se-

quences are primary repeat units and that they are without
any hidden internal repeat structure, we compute their
GRM diagrams showing that they are without any peak.
As an illustration, in Figure 11a we present the GRM
diagram for 2404-bp monomer which has no peaks.
Using BLAST (75) we have checked that there are no

other sub-sequences in NT_011903.12 which are homolo-
gous (within the 3% divergence limit) to consensus se-
quences of five monomer types m01–m05. The scheme of
all monomer copies in NT_011903.12 having divergence

with respect to consensus <3% is displayed in Table 2 and
Figure 12. As seen, these monomers are organized into six
tandem arrays. The tandem arrays III and VI are formed
solely from m05 monomers. These are highly homologous
tandem arrays and therefore give the main contribution to
frequency of the 2385 bp GRM peak. Thus, the m05
monomers form a separate family of monomeric type.
Tandem arrays I and IV contain reverse complement
monomer sequences. Tandem arrays II contain two
copies of 2-mer and two copies of 3-mer HORs. Each of
tandem arrays IV and V contains three copies of 2-mers,
and tandem array I contains two copies of 2-mers. The
2-mer copies are obtained by deleting one monomer, m02
or m04, from the 3-mer m02m03m04 HOR. Each of
tandem arrays of direct orientation containing HOR
copies starts with m01 and ends with m04, and for
reverse complement the orientation is in reverse order.

Let us now investigate the GRM peak at 7155 bp from
Figure 10b. We find computationally that the dominant
K-string for fragment length 7155 bp is GTAAATTT.
Performing K-string segmentation we obtain three
dispersed 7155-bp copies, with start positions within the
NT_011903.12 contig at �1.02, �1.44 and �2.65Mb, re-
spectively. For each of these three genomic sequences we
compute the corresponding GRM diagrams. The first and
third 7155-bp genomic sequences have no pronounced
GRM peaks, i.e. they have no internal repeat structure.
On the other hand, the GRM diagram for 7155-bp
genomic sequence at the position �1.44Mb is
characterized by two pronounced GRM peaks, at �2.4
and at �2� 2.4 kb, which are centred at 2404 and

Figure 10. GRM diagram in the fragment length interval from 2 to 8 kb for: (a) human chromosome Y (Build 37.3 assembly) and (b) contig
NT_011903.12 from human chromosome Y (Build 37.3 assembly). Fragment lengths given correspond to the most pronounced GRM peaks.

Figure 9. GRM diagram for long contig NT_032977.9 (length 91.3Mb) from human chromosome 1 computed with increasing resolution. GRM
diagram for: (a) the whole contig NT_032977.9; (b) a 10Mb sub-segment of NT_032977.9 containing location of tandem array based on the 902-bp
repeat unit and (c) 1Mb sub-segment encompassing the location of tandem array based on the 902-bp repeat unit.
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4783 bp, respectively (Figure 11b). Applying K-string seg-
mentation to the contig NT_011903.12 using AAATATT
T K-string for which the 2404-bp fragments have the
largest frequency, we find at the position of 7155 bp a
3-mer HOR copy m02 m03 m04. Hence, the 7155-bp
genomic sequence can be presented as a tandem of three
monomer consensus sequences, m02 m03 m04 (average
divergence of only 0.2%).

Let us comment on the origin of 7155-bp frequency
peak in the GRM diagram of NT_011903.12. In tandem
array of monomers at the position of two 7155-bp copies
we find the monomer array m02 m03 m04 m02 m03 m04.
Divergence between any two monomers from different
monomer families is �11%, while the average divergence
between monomers of the same family is <1%. Therefore,
the fragments generated by K-string segmentation extend
largely from each nucleotide position in the first m02
monomer to the corresponding nucleotide position in the
second m02 monomer, and analogously from the first m03

Table 2. Tandem arrays of �2.4 kb monomers in NT_011903 classi-

fied into monomer families m01, m02. m03, m04, m05 and HORs

Encircled: monomers organized into 2-mer and 3-mer HORs. Column
1: monomer family classification; Column 2: monomer length (bp);
Column 3: start position within NT_011903.12; Column 4: direct (D)
or reverse complement (R); Column 5: divergence with respect to con-
sensus (%); Column 6: nmer (if not monomeric); Column 7: array No.
Monomers with divergence < 3% are included in table.

Figure 11. GRM diagrams for human chromosome Y showing internal
repeat substructure of: (a) 2404-bp monomer consensus sequence, (b)
7155-bp sub-sequence at position �1.44Mb in NT_011903.12, revealing
a 3-mer HOR consensus structure and (c) 4757 bp consensus length
revealing a 2-mer HOR consensus structure.
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to the second m03, and from the first m04 to the second
m04 monomer. Thus, all fragment lengths arising from
six-monomer sub-sequence correspond to the combined
length of three constituent monomers m02, m03 and m04.
In general, if we have four tandem monomers, where the

first and fourth monomers are from the same family while
the second and third monomers are from two different
families, with a sizeable mutual divergence, most of the
corresponding GRM fragment lengths will be equal to the
sum of three monomer lengths, generating in GRM
diagram a peak at that length.
Finally, for repeats associated with the 4757 peak in

GRM diagram of NT_011903.12 the corresponding
dominant key string is TTTTGTTA. The GRM diagram
for this 4757-bp consensus length shows just one
pronounced peak, corresponding to a �2.4-kb monomer
length (Figure 11c). This reveals a 2-mer structure based
on �2.4-kb monomer. This is further substantiated by
expressing the 4757-bp consensus sequence in terms of
monomer consensus sequences: the 4757-bp consensus
sequence at contig position �2.98Mb can be very nearly
presented as reverse complement of a two-monomer
sequence m03 m04, in accordance with Table 2.
Similarly, we find some other cases of tandem

sub-sequences characterized by every-other-monomer
similarity:

m03 m02 m03 m02 (start position at 1 349 023bp),
m02 m03 m02 m03 m02 m03 (start position at
1 427 709bp),

m03 m04 m03 m04 (start position at 2 980 363bp) and
m02 m03 m02 m03 (start position at 3 052 957bp).

In each of these cases every second monomer belongs to
the same family, contributing to the frequency of fragment
lengths of �2� 2.4 kb, i.e. to the 4757-bp peak. We note
that the contribution from m02 m03 m04 m03 is smaller.
It is mainly due to the frequency of fragment length from
the first m03 to the second m03, while the frequency of
fragment length from m02 to m04 is smaller because m02
and m04monomers are mutually more divergent.

Case study: inter-tandem transitional dispersed repeat
sequences
In the spacings between the tandem sequences I–VI from
Table 2 we identify peculiar insertions which contain
dispersed monomers m01, m02, m05 and three types of
additional larger monomers. Each of them is without
any internal repeat substructure, which is seen from the
absence of peaks in their GRM diagrams.
In front of tandem I we find a sequence of three

monomers m05 m05 m7406. Here, m7406 denotes a new
dispersed monomer of 7406 bp, which is located between

the monomer m05 in front of region I and the first
monomer m04 from the region I. Between the tandems
II and III we find a spacing of �9.8 kb that contains a
7407-bp monomer (denoted m7407). Within the large 1.5-
Mb spacing between tandems III and IV, we find imme-
diately in front of tandem IV the monomers m05 m7406.
In the 9.8-kb spacing between the tandems V and VI we
find again a monomer m7407. All these four �7.4-kb
monomers, appearing within spacings, are highly homolo-
gous (divergence <1%) and without any internal repeat
structure.

Within the 64.5-kb spacing between the tandems I and
II we find an array of monomers m8531 m01 m8535 m01
m42547 (summary length 64 505bp), where m8531 denotes
a monomer of 8531 bp (similar to m8535), and m42547 a
monomer of 42 547bp. In the 53.5-kb spacing between the
tandems IV and V we find an array of monomers m42549
m02 m8556 (summary length 53 509bp). All three � 8.5-kb
monomers are highly homologous (divergence <1%).
Similarly, the two �42.5-kb sequences are also highly
homologous (divergence <1%).

Extension of GRM to very large fragment lengths
(hundreds of megabases)

In our preliminary version of GRM algorithm (78,79) the
computation of GRM diagrams was possible for fragment
lengths up to 100 kb. In this way computation has covered
dispersed repeat copies at mutual distance <100 kb. We
found that the K-string ensemble K=23 is suited to
obtain significant GRM peaks in that fragment length
interval. This interval covers practically all tandem
repeats and Alus. Also it covers other dispersed repeats
and segmental duplications with distance between copies
<100 kb.

However, in the cases of segmental duplications repeat
copies could appear at much larger spacings. Segmental
duplications are portions of DNA present at two or more
locations in the genome that satisfy the minimum require-
ment of 90% sequence identity and are >1 kb in length
(22,98,99). Spacing between these copies can be very large.
For this reason, we extend here the GRM algorithm to
enable computation of fragment lengths to much larger
spacings, up to hundreds of megabases, and to much
longer copy lengths (as large as megabases). In general,
with increase of K-string length the interval of accessible
fragment lengths increases, i.e. segmental duplication
copies and other dispersed copies can be detected at
larger spacings.

The present GRM algorithm (grm2012) is based com-
putationally on a method for K-string lengths K= 2n

(n integer), in which case the mapping is performed

Figure 12. Schematic presentation of 2-mer and 3-mer HOR copies from Figure 11, based on �2.4-bp monomers in human chromosome Y. For
description see the text.
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using operators on bits only. To identify very distant and
long segmental duplications, at spacings of 100Mb or
more, we use grm2012 choosing longer K-strings ensem-
bles, for example K= 25 or 26. For shorter K-string
lengths, like K=8, very long copies cannot be identified
because very long fragments are being masked by a back-
ground generated by short fragments. In addition, our
new procedure increases the speed of computation by add-
itional hundreds of times. We have tested that this
improved method applied to the K= 8 case sizeably de-
creases computation time, but does not influence results of
our previous version of GRM. At the same time, this
method enables extension of computed fragment length
much above the 100-kb limit, to hundreds of megabases.

Case study: GRM identification of 0.6-Mb segmental
duplications at 1-Mb spacing in human chromosome Y
Here we show a case study for identification of segmental
duplications in contig NT_011903.12 of chromosome Y.
Due to small divergence between the copies and substan-
tial length segmental duplications show up strong peaks in
GRM diagram. Using our grm2012 computer code for
K= 25we compute GRM diagram up to fragment length
of 3Mb (Figure 13). In this GRM diagram we find a
pronounced peak at the fragment length 1 633 744bp, in
accordance with spacings of �1.6Mb between highly
homologous sub-sequences from Figure 14. In that
fragment length interval a dominant group of peaks
appears at �1.6Mb; the most prominent is the GRM
peak at the fragment length 1 633 744bp. GRM diagram
indicates that all peaks around �1.6Mb are due to a
group of several connected sub-sequences (total length
of group is <1.6Mb) which is repeated at a head-to-head
distance of �1.6Mb.

An alternative approach to identify repeats using a
single-K-string GRM is based on similarity of length
arrays in different regions of genomic sequence. The
GRM length array of NT_011903.12 for a 8-bp single-
K-string TATTTTTA shows a mosaic repeat pattern in
the length array (Table 3), which is being repeated in a
different region within this contig, at distance of �1.6Mb
(Table 3), revealing segmental duplications within this
contig. The largest segmental duplications in
NT_011903.12, of the length �0.6Mb each (denoted
here as regions I and I0, respectively), lie at a mutual
distance of �1.6Mb. The start positions of each of these
two regions (944 621 and 2 578 383, respectively) corres-
pond to positions of the onset of repeat segments within
the length array, as illustrated in Table 3. Analogously, at
the end of each of the two repeat regions the repeat
sub-sequences of the two similar length arrays abruptly
diverge into completely different patterns.

A difference of �0.02Mb in the length of two duplicons
is due to deletions of some sub-segments. The largest
deletion is at position �2 999 615 in the region I0 with
respect to the region I. Precise value of position of the
onset of periodic pattern of length array depends on the
K-string used, since the precision of determined position is
sensitive to the length of fragments near the point of the
onset. In general, the smaller is the average fragment
length, i.e. the smaller the key string, the more precise

will be determination of region boundaries. A more
detailed scheme with mosaic pattern of segmental dupli-
cations in NT_011903.12 is shown in Figure 14.

CONCLUSION

Although extensive and impressive work has been done in
order to identify approximate repeats from sequenced
DNA data, there are still inherent limitations with avail-
able approaches. We present here the framework of GRM
(application, help and test run at www.hazu.hr/grm/tools
.html#grm2012) which is based on novel concept of direct
mapping of symbolic DNA sequence into frequency
domain. The concept of GRM is compared with
standard approaches of digital signal processing, which
uses mapping of symbolic DNA into numerical
sequence, and of statistically based methods, which use
locally optimized K-string mapping. We demonstrate the
ability of GRM to detect various types of repeats (tandem
repeats, segmental duplications, dispersed repeats, equi-
distant repeat copies separated by different spacers,
complex repeats, Period-3 coding repeats) that could
have extensive mutational changes (substitutions, dele-
tions and insertions). GRM is effective, robust, fast and
provides a global survey of repeats. Using a desktop
computer it can identify within minutes repeats in se-
quences as long as human chromosomes.
A threshold of noise above which the GRM peaks are

detectable in GRM diagram depends on the length of
genomic sequence used in GRM computation. If we
perform GRM computation for complete human chromo-
some sequences (genomic sequences as large as �200 Mb)
we identify GRM peaks of the ‘first sight’ survey of most
pronounced repeats (tandem repeat arrays, HOR arrays,
regularly or irregularly dispersed repeats, segmental dupli-
cations). For smaller but still substantial sub-sequences, of
�1–5Mb, the noise background becomes lower and we
can identify peaks corresponding to even shorter and/or
more mutated (substitutions and insertions/indels) repeats
than in the initial whole-chromosome GRM computation.
Performing GRM computations for even smaller
sub-sequences, of <�0.5Mb length, the noise background
is so much reduced that we can identify weak GRM peaks
corresponding to very short tandem arrays and/or with

Figure 13. GRM diagram of the contig NT_011903.12 in chromosome
Y (grm2012.exe at K=25). Frequencies are shown up to the fragment
length of 3Mb revealing a strong peak of segmental duplication at the
spacing of �1.6Mb.
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substantial substitutions and indels. Thus, the length of a
genomic sub-sequence for calculating GRM diagram acts
as a threshold for identifying less pronounced repeats.
Current version of GRM application (grm2012.exe)
removes almost all background noise during the process
of repeats identification for a given genomic sequence seg-
mented into 1-Mb sub-sequences. Thus, the GRM algo-
rithm is an efficient tool to de-noise predictions for
approximate and complex repeats.
In general, if we are interested to identify repeat units in

a fragment length interval from 8bp to 100 kb, it is con-
venient to use GRM algorithm with complete ensemble of
all 8-bp K-strings (grm2012.exe with K-string length par-
ameter K=8). The value K=8 is referred to as the
standard GRMK value. If the K-string length is not
specified, the code takes automatically the default length
of 8 bp.
If we are interested in short repeat units, <8 bp, it is

more convenient to use shorter K-string; then we use as
the value K=3. However, most of results are similar as
obtained for the standard K=8 input. On the other hand,

in the cases when we are interested to identify very distant
and very long segmental duplications (as large as
megabases), longer K-strings are preferable, and we use
K=25 or K=26.

In the standard string matching algorithms, like TRF
(30) and BLAST (75), the optimal strings for analysis are
determined locally by using statistical methods, so the
chosen strings can differ from segment to segment
within genomic sequence. On the other hand, in
standard signal processing algorithms, like SRF (69), the
intermediate symbolic to numerical sequence mapping can
introduce some ambiguities or artefacts, and a significant
background noise. In GRM we use consistently a
complete ensemble of all K-strings to map directly the
whole DNA sequence into frequency domain, which
reveals repeats without need to use statistical methods or
to involve ambiguities of symbolic to numerical sequence
mapping.

The useful features of GRM algorithm are

. to embody some advantages of both TRF and SRF
approaches, while avoiding some difficulties of heuris-
tics (as present in TRF) and of symbolic to numerical
mapping (as present in SRF),

. to be a highly automatized program appropriate for
identification of different classes of repeats (tandem
repeats, HORs, dispersed or equidistantly spaced
repeats and complex repeats),

. to be capable of detecting repeats with any period,

. to provide a highly robust algorithm with respect to
mutations (substitutions, insertions and deletions),

. to provide fast computations,

. to avoid need for users to optimize model parameters,

. to provide an overview (map) of repetitive structure
for the whole sequence,

. to identify and locate repeats ab initio, without need of
any prior knowledge of repeats.

Available algorithms have some advantages and some
disadvantages, as pointed out, for example in
(36–39,42,72), and a systematic comparison of efficacy
and applicability of different algorithms is still a challenge.
It was pointed out that what is needed are systematic com-
parisons of efficacy and selectivity of different algorithms

Figure 14. Scheme of the structure of segmental duplications within NT_011903.12 in chromosome Y. Horizontal axis represents position along the
contig. Start and end positions of each duplicated region are determined as the onset and end of repeat pattern in K-string length arrays. A dominant
8-bp single K-string corresponding to the 2385-bp peak is AAATATTT. Heavy lines denote pairs of nearly identical sub-regions, denoted by n and n0,
respectively. Positions of duplicated sub-regions (in megabases): (1) 0.94–1.55, (10) 2.58–3.16; (2) 0.12–0.28, (20) 1.73–1.89; (3) 0.69–0.92,
(30) 4.17–4.39; (4) 0.28–0.40, (40) 0.58–0.69 (reversed length array of 4); (5) 0.074–0.088, (50) 0.097–0.111; (6) 1.56–2.97, (60) 3.09–4.50 (reversed
length array of 6); (7) 2.978–3.013; (70) 3.023–3.069) (reversed length array of 7).

Table 3. Starting segments of two similar length

arrays in NT_011903.12, obtained by GRM seg-

mentation K-string TATTTTTA

region I region I0

17 17
2521 2521
10 248 10 257
137 137
9489 9499
22 271 22 264
3977 3977
1561 1561
635 639
861 861
. . . . . .

These length arrays correspond to two highly
homologous genomic sub-sequences at starts of
regions denoted I and I0 (each of �0.6Mb
length) at a mutual distance of �1.6Mb. This
pattern is an easily recognizable K-string signature
of segmental duplications.
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on the same, suitably selected standard set of test cases.
This standard testing set should include different repeat
patterns: tandem repeats, segmental duplication, dispersed
repeats, equidistantly spaced repeats and complex repeats,
including specified test substitutions, deletions and inser-
tions. On this ground it should be possible to select
optimal algorithms or combination of algorithms for sys-
tematic search of repeats in ever growing body of genomic
sequences. As for comparison of algorithms, an opinion
was expressed (76) that, following a common fairness
practice, a thorough comparative benchmark should be
best systematically performed by a third party, on a hope-
fully accepted set of test problems, taking in due account
possible presence of different tunable input parameters,
that can drastically affect the performance. It would be
advisable that the authors of each approach test the sen-
sitivity and efficacy of own algorithm analyzing complex
genomic patterns looking for new repeats.
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