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ABSTRACT

Revealing the clonal composition of a single tumor
is essential for identifying cell subpopulations with
metastatic potential in primary tumors or with
resistance to therapies in metastatic tumors.
Sequencing technologies provide only an overview
of the aggregate of numerous cells. Computational
approaches to de-mix a collective signal composed
of the aberrations of a mixed cell population of
a tumor sample into its individual components are
not available. We propose an evolutionary frame-
work for deconvolving data from a single genome-
wide experiment to infer the composition,
abundance and evolutionary paths of the underlying
cell subpopulations of a tumor. We have developed
an algorithm (TrAp) for solving this mixture
problem. In silico analyses show that TrAp correctly
deconvolves mixed subpopulations when the
number of subpopulations and the measurement
errors are moderate. We demonstrate the applic-
ability of the method using tumor karyotypes and
somatic hypermutation data sets. We applied TrAp
to Exome-Seq experiment of a renal cell carcinoma
tumor sample and compared the mutational profile
of the inferred subpopulations to the mutational
profiles of single cells of the same tumor. Finally,
we deconvolve sequencing data from eight acute
myeloid leukemia patients and three distinct
metastases of one melanoma patient to exhibit the
evolutionary relationships of their subpopulations.

INTRODUCTION

The mechanisms of cancer evolution and metastatic onset
are still largely unknown. The diversity, complexity and
evasive nature of tumor biology are central reasons for the
seemingly slow progress in the cure of most cancer types,

particularly in controlling the ability of tumor populations
to spread. Tumor populations are dynamic aggregates of
constantly evolving subclones, each carrying a variety of
genomic aberrations (1–35). This genetic heterogeneity is
often associated with differences in the biological behavior
of different cell subpopulations. Some of these subclones
are likely to be the primary instigators of invasion,
metastases or relapse following treatment (35–52). An
effective characterization of the aggressive potential of
tumors at early stages has an enormous potential to
guide new clinical interventions and translational
research (53–61).
Recently, several efforts have been made to provide a

complete genealogical perspective of cancer evolution
(62–66). Using fluorescent labeling techniques, or more
recently, single-cell sequencing, it is technically possible
to separate single cells from tumor samples to investigate
their evolutionary patterns (62–71). However, these
approaches are limited to either a small number of fluor-
escent markers (63,72) or to a relatively small number of
single cells. On one hand, the identification and selection
of uncharacterized subclones in high-throughput experi-
ments is beyond the capabilities of current cell-sorting
technologies; on the other hand, isolation and profiling
of enough single cells to obtain a statistically representa-
tive sample of a tumor composed of millions of cells has,
currently, prohibitive costs. For this reason, genomics
profiling of tumors still relies on pooling to provide
global averaged signals over the subclonal population
within a tumor sample (73–76). Computational methods
for identifying subclones, quantifying their relative abun-
dance and monitoring their emergence and dynamics
could prove extremely useful for the analysis of the het-
erogeneity of these pooled samples. This problem has been
often overlooked due to its mathematical complexity.
We present a mathematical approach to de-mix signals

from heterogeneous cell populations into their subclonal
components and subsequently unveil the underlying
dynamic tumor heterogeneity. Our proposed method is
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related to the problem of blind source separation (77–86),
where both the underlying sources and their relative com-
position are unknown. In contrast to blind source separ-
ation methods, we cannot assume that the underlying
sources are statistically independent, we have no prior
knowledge of the number of sources and we have at our
disposal only one mixture of the unknown sources. This
mathematical problem has a vast number of solutions and
can be addressed only if additional constraints are
imposed. Solutions to this problem can be found by
applying Bayesian methods such as hierarchical Dirichlet
Processes (66,87). While such approaches typically
produce plausible solutions to the problem, they require
knowledge of several parameters and prior distributions,
which are often not easy to calibrate. Futhermore, sto-
chastic methods are not guaranteed to find the optimal
solution(s) to the problem and may miss many solutions.
Herein, we introduce biologically meaningful constraints
to dramatically reduce the number of solutions to the
problem, and we provide an algorithm to find all solutions
of this reduced problem. In detail, we assume that tumor
cell populations develop in a parsimonious evolutionary
process. Furthermore, based on empirical observations,
we introduce a sparsity constraint that limits the number
of subpopulations. Distinctively from the standard
problem of phylogeny (88–99), where each species is
observed and measured separately, and differently from
cases where multiple aggregate samples have been
measured (100–106), our methodology, which we term
Tree Approach to Clonality (TrAp), is specifically
designed to deconvolve a single aggregate signal into its
different subclonal components. TrAp incorporates bio-
logically motivated constraints, which allow us to infer
(i) the composition of the subclones in a single aggregate
sample, (ii) the abundance of each subclone and (iii) the
evolutionary path of the subclones.
The article is organized as follows: we first define the

subclonal deconvolution problem and we present an effi-
cient algorithm for finding all its solutions in the ‘Results’
section. Using in silico simulated data we verify that the
algorithm is able to correctly deconvolve mixed subclonal
populations and that the method is robust to realistic
measurement errors. Further, the solution is often
unique when the number of populated subclones is
moderate. In addition, we also show that TrAp can cor-
rectly deconvolve random mixtures of karyotypes of
several cells from the same tumor biopsy or from
mixture of sequences generated in a study involving
somatic hypermutations (SHMs) in B cells. We subse-
quently compare the mutation profiles of 20 Exome-Seq
single-cell experiments to those inferred using an aggregate
signal generated by exome sequencing from the same renal
cell carcinoma tumor. We then apply the TrAp algo-
rithm to study the response to chemotherapy of eight
acute myeloid leukemia (AML) patients. Finally,
we apply TrAp to Exome-Seq data from three meta-
stases from three distinct body compartments and
compare their subclonal compositions and evolutionary
histories.

The subclonal deconvolution problem

We consider a population of cells where each cell can be
described by a binary vector, which we call genotype. Each
element of the genotype vector has an aberration state
modeled as a binary variable, e.g. the presence/absence
of a mutated nucleotide in a specific genomic position or
the presence/absence of a specific copy number variation
event in a specific locus. For each cell, the i-th element of
the genotype vector is 1 if the i-th aberration is present in
the cell and 0 if the aberration is absent. A subclone is a
collection of all cells that have identical genome-wide
aberration profile. A subclone is populated in the sample
if the fraction of cells sharing the subclone’s genome is >0
and can be detected by the experiment.

We define the subclonal deconvolution problem as the
task of de-mixing an aggregate measurement into a
linear combination of (unknown) subclonal genotypes.
The only information that is required as input is the ag-

gregate frequency vector y, whose elements yi correspond
to the frequency of the i-th aberration in the sample cell
population. For efficiency, we remove from the genome
all genotype entries k that are homogenous within the
population (i.e. yk ¼ 0 or yk ¼ 1), as they do not need to
be deconvolved. Next, to ensure that the aberration-free
noncancerous cells (wildtype) are included in the solution
of the problem, we add one dummy aberration to all the
normal and cancerous cells in the sample. By construction,
the aggregate frequency of this dummy aberration y1 is
equal to 1. Finally, without loss of generality, we sort
the aggregate frequency vector y in descending order
such that 1 ¼ y1 > y2 � . . . � yN > 0, where N is equal
to the number of aberration events considered including
the dummy aberration y1. The subclonal deconvolution
problem can be written in matrix notation as

y ¼ Cx, ð1Þ

where C is a matrix of size N�M whose elements cij are 1
if aberration i is present in subclone Cj, and 0 otherwise; N
is the size of the vector y; M is the number of subclones;
and x is a vector of size M where each element xj corres-
ponds to the frequency of subclone Cj in the sample. We
note that, without introducing the wildtype aberration, the
wildtype subclone would correspond to a vector of zeros
and we would not be able to infer the frequency of the
wildtype component using the linear model of Equation
(1). Furthermore, because the dummy aberration is
present in the wildtype and all other subclones, it
follows that (i) 8j, c1j ¼ 1 and (ii)

P
j xj ¼ 1. We note

that because M, C and x are all unknown in this
problem, there is an intractable number of possible solu-
tions. As previously discussed (107), forM > 2, the system
is underdetermined and the aggregate signal cannot be
uniquely deconvolved by solving the linear system, and
it is not even possible to find parsimonious unique solu-
tions using sparse reconstruction methods. However, by
introducing additional biologically motivated constraints
to the model, we can dramatically reduce the number of
possible solutions, such that the problem may have a
tractable number of optimal solutions, ideally only one.
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We therefore seek the family of solutions (TrAp solutions)
that sequentially satisfy the following constraints:

(1) Evolutionarity. The subclones are generated in an
evolutionary process starting from a subclone with
no aberrations. Every subclone is generated from
an existing subclone by adding to it a single new
aberration event.

(2) Parsimony. The number of subclones M that are
generated during the evolution process is minimal.

(3) Sparsity. The number of populated subclones P (i.e.
the number of subclones j for which xj > 0) is minimal.

(4) Shallowness. The depth of the evolutionary tree

(i.e. the number of generations) D ¼ maxj
P

i cij
� �

is

minimal.

A schema of a TrAp solution is shown in Figure 1.
The evolutionarity constraint is used in many biological

systems, in particular when studying development of cell
populations (90–97,100–102). The parsimony constraint is
typically satisfied because the expected probability of a
specific aberration event in a nucleotide or a locus is
low and it is therefore unlikely that an event occurs
more than once and independently in distant subclones.
This constraint is the main criterion used to determine the
optimality of maximum parsimony methods commonly
used in phylogeny (88,89,93,98,105). The parsimony
constraint dramatically reduces the number of possible
solutions of Equation (1) because it limits the number of
subclonesM. The sparsity constraint is justified by the fact
that some subclones may die out or may be too rare to
be detected. Also, it has been shown in several studies
that few subclones acquire an evolutionary advantage
and outgrow the other subclones (5,12,108–112), thus
reducing the number of populated subclones. The shallow-
ness constraint is justified as strong genomic instability
may not be viable, thus evolutionary trees tend to be
shallow and wide rather than deep and narrow.

MATERIALS AND METHODS

In this section, we describe the procedures used to prepro-
cess input data for the TrAp algorithm.

Cytogenetic data

The cytogenetic data were obtained from the Mitelman
database, which contains 61 846 biopsies as on 15
August 2012. We accessed the database through the
Cancer Genome Anatomy Project (CGAP) Web site
(113), and we filtered out 29 842 biopsies with uncertain
calls (indicated by a ‘?’ in the karyotype data). We focused
our search only on aberrations that are binary by nature,
namely chromosome deletions and translocations. For
each biopsy, we performed 100 in silico simulations in
which we mixed the subclones using random nonnegative
coefficients.

SHM data

SHM sequencing data were derived from B cells undergo-
ing SHM, a process that leads to high-affinity antibody
molecules (114,115). In detail, we analyzed sequences
of the V(D)J region extracted from the same germinal
center from the sample 11930d16_4print.2, which was
sequenced by Anderson et al. (116,117). The sequences
were aligned using the alignment tool of the international
ImMunoGeneTics information system� (IMGT)
(118,119) to properly align the V, D and J regions. We
selected eight sequences that were aligned to the same
V(D)J sequence V1ðD1ÞJ1. Because these sequences are
from the same germinal center and align to the same
V(D)J sequence, they are expected to stem from a single
naı̈ve B cell and have evolved through the SHM process.
From the sequencing experiment, 20 mutated nucleotides
were identified. Furthermore, polyallelic mutations
were found at position 170, where both A! C and
A! G mutations were observed. Next, we considered
the seven unique sequences (sequences five and eight
were identical) as representatives of the genome of seven
different subclones.

Exome capture sequencing data

Exome-capture data (120) were obtained from a recent
clear cell renal cell carcinoma (ccRCC) study (64) and
from the melanoma patient YUHUY of the Yale
cohort, for which DNA from normal circulating lympho-
cytes and three tumor metastases (TM1, TM3 and TM4)
were subjected to exome-capture Illumina Hi-Seq
sequencing (121).
Exome-Seq reads from the aggregate samples of the

ccRCC patient were combined and aligned to the human
reference genome (assembly hg19) using Bowtie (122) with
parameters ‘-n3 -k1 -m20 -l32 --chunkmbs 1024 --best
--strata’. The frequency and coverage of each point
mutation was computed using VarScan (123). We
further selected the mutations that were validated by Xu
et al. (64) by polymerase chain reaction (PCR) validation
(Supplementary Table S3B) and by bioinformatics
analysis (Supplementary Table S3A), whose genomic

Figure 1. A schema of deconvolution of the mixed signal of four
subclones. In this example, the aggregate signal frequency vector y

on the left side of the matrix-vector equation represents the frequency
of five aberrations in the aggregate sample. To allow the heterogeneous
mixture of subclones to include normal cells we introduce a dummy
aberration that is present in any cell. The frequency of the dummy
aberration y1 is equal to one. The frequencies of the actual five aber-
rations A2, A3, A4, A5 and A6 encoded in the remaining elements of the
vector Y are given by y2 ¼ 0:6, y3 ¼ 0:4, y4 ¼ 0:35, y5 ¼ 0:3 and
y6 ¼ 0:1, respectively. In this example, the optimal TrAp solution is
unique and has four populated subclones: C2 with aberrations fA2g,
C4 with aberrations fA2,A4g, C5 with aberrations fA3,A5g and C6

with aberrations fA3,A6g. The optimal solution is shown both as an
evolutionary tree (left) and in matrix form according to Equation (1)
(right), where the tree topology is encoded in the binary matrix and the
relative composition of the subclones is represented in the column
vector.
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coordinated were realigned to the assembly hg19 using the
Lift-Over tool of Galaxy (124).
For the melanoma patient YUHUY (121), we selected

19 mutations that were populated in the normal sample
(i.e. y4 0), had high sequence coverage (i.e. >200 reads
covering the specific nucleotide) and were localized on
chromosome 18.

RESULTS

The results are divided in four parts. In the first part, we
describe our novel TrAp algorithm for subclonal decon-
volution of aggregate genomic signals consisting of aber-
rations’ frequencies (e.g. mutational allele frequencies).
We show that the TrAp algorithm always identifies at
least one solution. Further, we incorporated into TrAp
an error model to handle noisy input data as well as an
extension for handling situations where each locus can be
affected by distinct consecutive aberrations (e.g. nucleo-
tides which can undergo several consecutive mutations
such as A! G! T, or C! T! G! A). In the
second part, we simulate noisy aggregate signals con-
structed by random linear combinations of simulated
subclonal aberration profiles. We used these simulated
data to show that TrAp can correctly deconvolve
mixtures of evolutionarily related subclones even in
presence of levels of noise that are typically found in
current genomics experiments. In the third part, we
generated realistic aggregate signals by mixing subclonal
genomic profiles obtained from cytogenetic analyses using
random coefficients. We generate these data separately for
each patient and show that, for nearly all aggregate
samples, TrAp recovered the subclonal components.
Similarly, we generated realistic aggregate signals from
somatic hypermutated (SHM) regions from B cells. As
we show, SHM is a particularly suitable system for the
framework of our TrAp algorithm, which successfully re-
covered all components from the aggregate signals. In the
fourth part, we apply our approach to exome-sequencing
experiments. We present an analysis of recent single-cell
exome sequencing from a renal cell carcinoma study
where, besides a collection of 20 single cells, an aggregate
has also been measured. Despite the reported difference
between the aggregate and mean aberration profile of the
single-cell experiments, TrAp could still identify subclones
with co-occurring aberrations consistent with some of the
co-occurring aberrations found in direct single-cell meas-
urements. We then apply the TrAp algorithm to study
the response to chemotherapy of eight AML patients by
comparing the subclonal composition before and after
treatment. Finally, we analyze three metastases from
separate body compartments of a melanoma patient and
compare their inferred evolutionary patterns in a genomic
region surrounding the Deleted in Colorectal Cancer
(DCC) gene.

A brute-force algorithm for solving the subclonal
deconvolution problem

To develop a fast algorithm to solve the subclonal decon-
volution problem, we first derive some useful properties

that every TrAp solution must satisfy (see Supplementary
Note A). First, we note that the evolutionarity and
sparsity constraint imply that the evolutionary trees
must have exactly N clones. We term such a solution an
N-solution and its evolutionary tree an N-tree. In this
setting, mutations happen only once during the evolution-
ary process and cannot be lost at later stages in evolution.
We therefore can define Ci as the subclone for which the
i-th aberration occurs for the first time.

Next, we note (see Supplementary Note B for derivation
and a more detailed description) that, if we consider two
subclones Ci and Cj such that yi > yj (which implies i < j
because the y vector is sorted), the subclone Ci cannot be a
descendant of Cj. This property implies that all evolution-
ary trees can be generated by a simple iterative procedure,
which starts from the wildtype clone C1 and adds the
subclone Ci to all trees generated in the step i – 1
(Supplementary Figure S2). The upper bound on the
number of possible evolutionary N-trees is thus ðN� 1Þ!,
as every subclone i can only be the direct descendant of
i – 1 subclones. This bound is significantly smaller than the
number of all possible trees with N labeled vertices, which
is NN�2 according to Cailey’s formula (125,126).

The TrAp algorithm

We now rewrite the subclonal deconvolution problem (see
Supplementary Note C for derivation) as follows:

x ¼ y��y, ð2Þ

where � is the parent indicator matrix, whose element �ij
(which we call parent indicator variable) is 1 if Ci is the
parent of Cj (i.e. if subclone Cj is the result of a single
aberration event in subclone Ci), and 0 otherwise. An im-
portant corollary of this equation is that the subclone Ci is
not populated if and only if

yi �
XN
j¼1

�ijyj ¼ 0: ð3Þ

In other words, the clone Ci is not populated when the
aggregate frequency yi of aberration i is equal to the sum
of the aggregate frequencies of all the direct descendants
of the subclone Ci. Therefore, the number of non-
populated subclones of the N-tree encoded by � is
determined by the number of aberrations i that satisfy
Equation (3). Moreover, to satisfy the sparsity constraint
of a solution, we do not need to know the topology of the
whole evolutionary tree, but only the subset of rows of the
matrix � that satisfy Equation (3). We now leverage on
this property to efficiently generate sparse solutions to the
subclonal deconvolution problem.

First, we group each subset of subclones that satisfy
Equation (3) into a first-generation tree Ti, which we

define as the subset of subclones CTi
p ,CTi

1 , . . . ,CTi

Ni

n o
such

that the subclone CTi
p is not populated (i.e. xTi

p ¼ 0) and

that Ni subclones CTi

1 , . . . ,CTi

Ni
are its direct descendants.

Each first-generation tree is represented by a row of the �
matrix. For example, there are three first-generation trees
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for the aggregate signal Y ¼ f1,0:6,0:4,0:35,0:3,0:1g,
namely T1 ¼ fC1,C2,C3g, T2 ¼ fC1,C2,C5,C6g and
T3 ¼ fC3,C5,C6g (Figure 2). We note that the optimal
TrAp solution for this example contains the first-
generation trees T1 and T3 (Figure 1). Furthermore, a �

matrix associated with a first-generation tree must follow
the evolutionary constraints previously described
(8j > 1,

PN
i¼1 �ij ¼ 1), and thus, the first-generation tree

also gives complete information about the columns of �

corresponding to the direct descendant subclones CTi

1 , . . . ,
CTi

Ni
. For example, the first-generation tree T1 ¼ fC1,

C2,C3g implies that �i,2 ¼ 0 and �i,3 ¼ 0 for every i 6¼ 1
(Figure 2).

Next, we define a partial tree as a collection of first-
generation trees fT1, . . . ,Thg that can jointly be contained
in a full evolutionary tree. Because each first-generation
tree can be represented by a row of the � matrix, a partial
tree that is comprised of h first-generation trees can be
represented by h rows of the � matrix. In the example
above, the partial tree that contains the first-generation
trees T1 and T3 is represented by rows 1 and 3 of the
matrix � in the bottom panel of Figure 2. Similarly, to
first-generation trees, the matrix � associated with a
partial tree must follow the evolutionary constraint,
which implies that not all combinations of first-generation
trees give rise to partial trees. In the example above, the
partial trees T1 and T3 can be combined to generate the
partial tree PT1 ¼ fT1,T3g (Figure 2 bottom), whereas
the pairs fT1,T2g and fT2,T3g cannot be combined to

generate partial trees. Therefore, in the example above,
the possible partial trees are PT1 ¼ fT1,T3g, the empty
partial tree PT2 ¼ fg and the partial trees PT3 ¼ fT1g,
PT4 ¼ fT2g and PT5 ¼ fT3g. Moreover, we note that all
N-trees that contain a partial tree comprising of h first-
generation trees have N – h populated subclones. This
implies that TrAp solutions, which must satisfy the
sparsity constraint, must also contain one of the partial
trees comprising the maximum number of first-generation
trees. In the example above, the optimal TrAp solution
(Figure 1) contains the partial tree PT1, which is the
only partial tree comprising two first-generation trees.
All TrAp solutions contain the maximum number of

first-generation trees, thus the TrAp algorithm dramatic-
ally reduces the search space by identifying the optimal
partial trees which are then used as starting points for
rapidly building all the sparsest solutions to the subclonal
deconvolution problem. In detail, the TrAp algorithm
solves the subclonal deconvolution problem as follows
(Figure 3):

(1) Identify all first-generation trees from the aggregate
signal vector y.

(2) Combine all first-generation trees to generate all
partial trees.

(3) Discard partial trees that do not have the minimum
number of populated subclones.

(4) Generate all evolutionary trees consistent with the
partial trees comprising the maximum number of
first-generation trees. This step is done iteratively
for each partial tree, similarly to the way described
for the brute-force algorithm. The only difference is
that, when the parent clone CTi

p of a first-generation

tree Ti ¼ CTi
p ,CTi

1 , . . . ,CTi

Ni

n o
is added to the tree, the

subclones CTi

1 , . . . ,CTi

Ni
are automatically added as

direct descendants of CTi
p .

(5) Optimize the shallowness constraint by sorting the
generated solutions by the depth of the generated tree.

The performance of the TrAp algorithm is equivalent
to the brute-force approach when there are no first-
generation trees (i.e. when all subclones are populated),
but it becomes superior to a brute-force approach when
P < N. While the brute-force algorithm generates all
the evolutionary trees compatible with the input data,
the TrAp algorithm generates only the optimal evolution-
ary tree(s).

Handling measurement errors

The models presented above show that TrAp is an efficient
algorithm for inferring subclonal components from the
aggregate measure. In particular, we have shown that in
the absence of noise, TrAp returns the exact solution when
the underlying subclonal population satisfies reasonable
constraints and that the algorithm is always able to find
at least one solution. However, experimental measure-
ments are often noisy and can only have finite precision.
In this section, we discuss two approaches to treat noisy

input. In both error models, the input to the TrAp

Figure 2. Identification of first-generation trees. In this example, the
aggregate signal frequency vector y ¼ ½1,0:6,0:4,0:35,0:3,0:1� is consist-
ent with three first-generation trees T1 ¼ fC1,C2,C3g, T2 ¼ fC1,C2,
C5,C6g and T3 ¼ fC3,C5,C6g. Each first-generation tree is visualized
as a matrix equation X ¼ Y��Y according to Equation (2) (left)
and as a partial evolutionary tree (right). In the bottom row, the
partial tree PT1 given by the union of the partial trees T1 and T3 is
shown. Question marks indicate values that are unknown as they are
not specified by the first-generation tree or by the partial tree.
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algorithm requires an additional vector e of size N whose
elements ei are related to the precision of the measure yi.
The error related to the dummy variable is denoted by e1
and is set to 0 as y1 ¼ 1 is a constraint of the model and
thus e1 must vanish.
First, we examine the bound error model in which we

assign a threshold to the error ei � 0 of every underlying
aggregate signal eyi such that each measured signal yi will
be in the range eyi � ei,eyi+ei½ �. Equation (3) is then
modified accordingly and we can state that the subclone
Ci defined by aberration i is not populated if and only if

yi �
XN
j¼1

�ijyj

�����
����� � ei+

XN
j¼1

�ijej: ð4Þ

Next, assuming normally distributed measurement errors
we implement a normal error model using the confidence
intervals to determine whether a subclone is populated.
Specifically, we assume that the underlying aggregate
signal is normally distributed around the observed
signal, i.e. yi � N eyi,e2i� �

. We substitute each term of the
left-hand side of Equation (3) by normally distributed
random variables to derive the distribution of the
random variable r � N �r,�

2
r

� �
with mean

�r ¼ eyi �PN
j¼1 �ijeyj and variance �2r ¼ e2i+

PN
j¼1 �ije

2
j .

Using the distribution of r and a desired confidence level

� > 0 (default 0.05), we can define that clone Ci is not

populated if 0 falls within the confidence interval

½q�
2
,q1��

2
�, where q� is the a quantile of the distribution of r.

Once the error model is chosen, the algorithm generates
all optimal TrAp-trees in a similar fashion to the noise-
free case. The main difference is that in the first step of the
TrAp algorithm, Equation (4) [or a confidence interval on
the distribution r � N �r,�

2
r

� �
] is used instead of Equation

(3) to identify first-generation trees. Moreover, instead of
using back-substitution for finding the vector x, we solve
the nonnegative linear least square problem Cx ¼ y with
the constraint xk ¼ 0 for all nonpopulated subclones k
associated with the parents of the first-generation trees.
This fitting allows us to obtain a value of exactly zero
for all nonpopulated subclones and to distribute measure-
ment error more evenly in the vector x.

Extensions and integrations of the TrAp algorithm

The TrAp algorithm was also generalized to deal with
nonbinary aberrations (e.g. multiple distinct point muta-
tions at the same nucleotide). This has been done by
reducing this generalized nonbinary problem to multiple
binary problems that can be solved using the core TrAp
algorithm (detailed explanation and derivation are given in
Supplementary Note D, Supplementary Figures S3 and S4).
This generalized model was used to infer subclonal compos-
ition from a mathematical mixture of the SHM data.

Furthermore, the algorithm can be easily modified by
imposing additional constraints that need to be satisfied at
each step of the iterative tree reconstruction procedure.
The contraints can be used to specify the order in which
two mutation occur or whether two aberrations must be
on separate evolutionary branches (i.e. they will never co-

Figure 3. Illustration of the usage of first-generation trees and partial trees for deriving the TrAp solution of a mixture of four subclones. In this
example, five aberrations were measured from an aggregate sample and their frequencies were y2 ¼ 0:8, y3 ¼ 0:5, y4 ¼ 0:5, y5 ¼ 0:4 and y6 ¼ 0:2,
respectively. The dummy measurement y1 ¼ 1 was also added to generate the aggregate signal frequency vector y ¼ ½1,0:8,0:5,0:5,0:4,0:2�. In the first
step, TrAp identifies all first-generation trees, namely T1 ¼ fC1,C2,C6g and T2 ¼ fC3,C4g. In the second step, TrAp generates the possible partial
trees, namely PT1 ¼ fg, PT2 ¼ fT1g, PT3 ¼ fT2g and PT4 ¼ fT1,T2g, and consequently selects only PT4 ¼ fT1,T2g, as it is the only partial tree that
contains a maximum number of first-generation trees. In the third step, TrAp generates evolutionary trees starting from the partial tree
PT4 ¼ fT1,T2g. To complete the evolutionary tree starting from PT4, the subclone C1 is positioned as the root of the tree. Because C1 is part of
the first-generation tree T1, the subclones C2 and C6 are automatically added as direct descendants of C1. Next, C3 is added as a direct descendant of
C2. Because C3 is part of the first-generation tree T2, C4 is automatically added as direct descendant of C3. Finally, C5 is added as a direct descendant
of C4, generating the optimal TrAp solution to the subclonal deconvolution problem. We remark that the optimal solution generated by the TrAp
algorithm is equal to the left solution of Supplementary Figure S1 and to solution S1 in Supplementary Figure S2.
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occur). Such constraints are used in the extension of TrAp
to nonbinary aberrations (Supplementary Note D). These
constraints can also be specified when additional informa-
tion is available to the user. For example, the aberration
state of two nearby nucleotide positions could be observed
simultaneously in a read pair. This additional information
can be used to determine if two mutations are mutually
exclusive or if one is an ancestor of the other (66).
Moreover, if multiple samples are available for a given
patient, a unique evolutionary tree inferred from one
sample can be used to constrain the evolutionary trees
of the remaining samples.

The TrAp algorithm by default returns only the solu-
tion(s) that optimize all the constraints. In addition, the
user can specify parameters to relax the sparsity and shal-
lowness constraints. For example, all N-solutions whose
number of populated subclones is less than or equal to a
desired number can be obtained by retaining more partial
trees during the third step of the TrAp algorithm. The so-
lutions produced by TrAp (or the brute-force approach)
can then be rescored by more advanced user-defined
fitting functions to refine the results. These fitting
function may include terms that model the biological
system under consideration (77) [e.g. some types of aberra-
tions are more common during SHM (115) or during
melanoma development in melanocytes (127)] or terms
that model the sampling noise of a given experiment. The
TrAp algorithmwas used to deconvolve systems of up to 25
aberrations. Although many tumors have larger number of
nonsynonymous mutations, the effective number relevant
for analyzing the tumor can be significantly reduced. This
can be done by (i) considering only a subset of medically
relevant genes, e.g. by selecting the first tier defined by
Mardis et al. (128) or by focusing on expressed genes
whose mutations are predicted to be deleterious in
proteins or genes that are downregulated relative to
normal tissue, (ii) focusing on mutations within selected
pathways or (iii) clustering all mutations into groups with
similar minor allele frequencies. These reduction
approaches allow to identify meaningful aberrations and
thus generate trees that are simpler and easier to interpret.
Furthermore, studying a smaller number of mutations may
be more robust to error and may allow to identify outliers
and artifacts in the input data. In the TrAp algorithm, we
include a clustering procedure that groups together aberra-
tions with similar frequency (according to the error model
chosen) before running the algorithm. More complex clus-
tering methodologies can be applied if replicate samples
are available or if multiple samples from the same patient
are available. For example, Ding et al. (18) applied
MCLUST (129,130) and clustering based on Kernel
Density Estimation to identify three to five major clusters
of minor allele frequencies in three conditions (normal,
tumor, relapse) for eight AML patients. Below, we also
reanalyzed Ding et al. (18) data using the minor allele
frequencies of the clusters as input to the TrAp algorithm.

Implementation of the TrAp algorithm

TrAp was programed in Java. TrAp makes use of the Java
Matrix package JAMA (131) for linear regression and

code by Josh Vermaas to solve the nonnegative least
square problem using JAMA. The Java Universal
Network/Graph Framework (132) is used for creating pic-
torial representations of evolutionary trees. TrAp is
released under the GNU Lesser General Public License
3.0 and can be downloaded from the SourceForge reposi-
tory at the URL http://sourceforge.net/projects/klugerlab/
files/TrAp/.

Deconvolution of simulated noisy aggregates

To confirm that TrAp can correctly infer the subclonal
composition from aggregate noisy signals with typical
noise levels found in genomic experiments, we performed
simulations starting with random in silico evolutionary
trees with different numbers of aberrations N and different
numbers of populated subclones P. For each tree, we also
studied the effect of different magnitudes of measurement
errors E and we investigated the operating conditions for
which TrAp would correctly identify the true solution.
We performed simulations by sampling genotypes

whose size N ranged from 1 to 12 and with underlying
number of populated subclones P ranging from 1 to
N� 1. The simulations were repeated for measurement
error values E equal to 10�2, 10�3 and 10�4. For each
combination of these quantities, we performed 1000 runs
using in silico data as follows: during each run, a random
evolutionary tree with N aberrations was generated by
randomly assigning a parent subclone Cj (j 2 ½0,i� 1�) to
each subclone Ci. The set of P populated subclones was
then selected by first including all leaves of the tree and
then adding the remaining subclones randomly. The fre-
quency of the populated subclones was randomly assigned
and the frequency of the nonpopulated clones was set to
zero. Next, the aggregate frequency vector ~y was
calculated from the generated tree. Finally, we perturbed
each element of eyi by adding an error ei drawn from a
uniform distribution U �E,Eð Þ. The elements yi ¼ eyi+ei
and the error ei are used as input for the bound error
model option of the TrAp algorithm. For each aggregate
signal from a random tree, we examined (i) whether
the true solution (i.e. the solution associated with the
simulated tree), which is by construction one of the
possible solutions to the subclonal deconvolution
problem, had the minimum number of populated
subclones among all solutions (sparsity constraint),
(ii) whether the true solution had the minimum number
of populated subclones and minimum number of levels of
the evolutionary tree among all solutions generated
by TrAp (sparsity and shallowness constraints) and
(iii) whether the true solution was the only TrAp
solution (sparsity and shallowness constraints and unique-
ness of the optimal solution).
The results of the simulations show that aggregate

signals from sparse trees are deconvolved correctly even
in presence of typical noise levels of sequencing experi-
ments (Figure 4). We note that for simulations of
nonsparse trees, TrAp generates a large number of
possible solutions of which only one is the true solution.
Furthermore, in the presence of high levels of noise, the
TrAp algorithm identifies a large number of first-
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generation trees that satisfy Equation (4) and generates
solution trees whose number of populated subclones is
smaller than the number of populated subclones of the
true solution.

Analysis of simulated mixtures of biological data

Deconvolution of mathematical mixtures of karyotyping
data from single tumor biopsies
After showing that our approach can correctly deconvolve
aggregate signals of subclones with a tree-like genealogy,

we sought to investigate whether actual subclonal popu-
lations can be charted on evolutionary trees. For this
purpose, we analyzed the Mitelman database, consisting
of cytogenetic analyses of >60 000 biopsies (see ‘Materials
and Methods’). For each tumor type, we counted how
frequently the relationships between cancer clones from
the same biopsy could be explained by an evolutionary
tree that follows the evolutionarity and parsimony con-
straints (but not necessarily the sparsity and shallowness
constraints). We found that almost all biopsies in the
Mitelman database can be represented by evolutionary
trees (Table 1), with the notable exception of astrocytoma
of grades III and IV (Supplementary Figure S5).

We mathematically mix all karyotypes of each single
patient from the Mitelman database and apply the TrAp
algorithm for each of these mixtures. The ability of the
TrAp algorithm to extract the correct underlying clonal or
subclonal components depends on the number of actual
components (columns) and the multiplicity of aberrations
studied in each mixture (rows). The frequency in which
TrAp is able to recover the correct underlying components
is shown in percentages. The number of mixtures for a
given size of aberration multiplex (row) and given
number of actual underlying components (column) is
shown in parentheses. Note that when the column index
is greater than the row index (entries shown in bold), the
parsimony constraint cannot be satisfied.

Next, we investigated whether the TrAp algorithm
could uniquely deconvolve mixtures of the cancer
subclones within a biopsy. As these aggregate signals are
obtained by mixing actual subclonal profiles, we consider
these signals to be more realistic than our previous in silico
simulations. For each biopsy, we generated 1000 in silico
mixtures by combining the cytogenetic profiles of each
subclone using random nonnegative coefficients. We
then applied our TrAp method to deconvolve in silico
mixtures of biopsies. Our results (Table 1) show that
81.5% of the aggregate signals simulated from biopsies
with three or more subclones were correctly deconvolved
(i.e. in at least one TrAp solution the subclones contained
in the biopsies were found and were present in the correct
proportions) and that in 67.3% of these simulations there
was only one TrAp solution to the deconvolution
problem. Moreover, the TrAp algorithm inferred also
intermediate nodes in the evolutionary tree that did not
correspond to any of the cytogenetic profiles for the
biopsy, providing a plausible picture of the evolutionary
order in which the aberrations occurred. Figure 5 shows
the result of two deconvolution simulations, one from a
melanoma sample with two subclonal populations (133)
and one from an adenocarcinoma sample with three
subclonal populations (134). Interestingly, a small
number of biopsies showed more clones than aberrations
(shown in bold in Table 1). Albeit a tree-like genealogical
relationship can be constructed, these biopsies do not
satisfy the parsimony constraint because the number of
subclones M is greater than the number of mutations N.
For this reason, their genealogy cannot be reconstructed
by the TrAp algorithm or by any other method that makes
use of a similar parsimony constraint (88,89,93,98).

Figure 4. Deconvolution of simulated data. In each table the index of
a column represents the number of populated subclones and the index
of a row represents the number of mutations. We generated 1000
simulations for any pair of row and column indices (pixel) in these
tables. We performed this analysis using different level of noise
(error) drawn from a uniform distribution U �E,Eð Þ. The heatmaps
(tables) show the percentage of trees in each cell for which the true
solution has the minimum number of subclones (left panel), is a TrAp
solution (middle panel) and is the only TrAp solution (right panel) if
the best solution is unique.

Table 1. Applicability of the TrAP algorithm for different number of

aberration events and underlying subclones

1 2 3 4 >4

1 100% (19078) n/a n/a n/a n/a
2 100% (5150) 100% (923) 0% (3) n/a n/a
3 100% (1830) 100% (367) 94% (83) 0% (2) n/a
4 100% (991) 100% (182) 89% (27) 89% (18) n/a
5 100% (656) 100% (120) 88% (33) 100% (8) 100% (5)
6 100% (445) 100% (66) 92% (13) 100% (6) 50% (4)
7 100% (333) 100% (58) 89% (9) 25% (4) 100% (2)
8 100% (241) 100% (37) 86% (7) 100% (3) 50% (2)
9 100% (228) 100% (26) 60% (5) 0% (1) 100% (1)
10 100% (174) 100% (14) 100% (2) n/a 50% (2)
11 100% (196) 100% (25) 67% (3) 67% (3) n/a
12 100% (156) 100% (16) 100% (3) 0% (1) 50% (2)
13 100% (137) 100% (21) 50% (2) n/a 100% (1)
14 100% (94) 100% (12) n/a 100% (1) 100% (1)
>14 100% (152) 100% (22) 57% (7) 25% (4) 25% (4)

Entries where the parsimony constraint cannot be satisfied are shown
in bold.
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Deconvolution of a mathematical mixture of SHM data
with polyallelic mutations in a single nucleotide
SHM introduces mutations that target the variable regions
associated with immune adaptivity in the Ig loci. In par-
ticular, SHM involves a programmed process of muta-
tions that affects the variable regions of immunoglobulin
genes and starts from an initial dividing single cell (a naı̈ve
B cell in this case). All descendants of the founder cell
accumulate mutations and, at the same time, are subjected
to a strong selective pressure. For this reason, SHM is a
particularly good biological model system to test our de-
convolution method, which imposes tree-like evolutionary
constraints.

We considered a data set where 20 mutated nucleotides
in the V(D)J region of the Ig locus were measured in eight
sequences extracted from the same germinal center (see
‘Materials and Methods’ section) (116). This data set was
particularly interesting because of the high number of mu-
tations found and because of the presence of polyallelic
mutations.
We mathematically mixed the multi-subclonal data and

applied our TrAp algorithm taking into account that the
SHM scenario consists of nonbinary aberrations. We
mixed these subclones using random nonnegative coeffi-
cients and performed 1000 simulations. In all simulations,
TrAp was able to recover the original sequences and the
solution was unique in 65% of the simulations. The TrAp
solution of one simulation is shown in Figure 6. However,
even if the solution was not always unique, in >97% of the
simulations there were only five or less candidate solutions
satisfying the evolutionary, parsimony and sparsity con-
straints, all of which correctly identified at least six out of
seven subclones.
In addition to the identification of the underlying

subclones, the TrAp algorithm generates evolutionary
trees, which represent the B cell lineage during the SHM
process. The reconstruction of B cell lineage can provide
important insights into the mechanisms that regulate
adaptive immunity. B cell lineage reconstruction is gener-
ally performed using maximum parsimony constraints
(98) using the sequences of several Ig loci as input.
However, in contrast to these approaches, the TrAp algo-
rithm is able to generate maximum parsimony trees when
only the relative frequency of mutations at each nucleotide
is available. Therefore, the TrAp algorithm can be used to
generate parsimonious evolutionary trees when only
partial sequence information is available, e.g. when only
short read sequences from a single aggregate sample are
available, or when the loci analyzed span a region that is

Figure 6. Deconvolution of a random mixture of eight sequences from SHM data. Eight sequences from the Ig locus of eight cells extracted from the
same germinal center were mixed with the random coefficients given by x ¼ 8:8%,22:6%,20:2%,7:9%,5:7%,8:5%,10:9%,15:5%½ �. Since sequences
five and eight are identical, they are grouped in a single clone whose relative frequency is 5:7 %+15:5 % ¼ 21:2 %. In total, 20 mutated nucleotides
were found in the data, and two different mutations were identified at position 170. Mutations are shown using the notation
‘position : reference! mutated’, e.g., the notation 170 : A! G indicates that the nucleotide at position 170 was mutated from Adenine to
Guanine. The notation 170 : A! G! C indicates that the nucleotide at position 170 was mutated twice, first from Adenine to Guanine and
then from Guanine to Cytosine. In this example, all seven subclones were correctly deconvolved by the TrAp algorithm, the frequency of the
subclones was correctly estimated and the solution was unique.

Figure 5. Deconvolution of random mixtures of three subclones. The
boxes represent different subclones, each denoted by the list of its
aberrations. The aberration profiles of two subclones identified by cyto-
genetics in a melanoma biopsy (left) and the aberration profiles of three
subclones identified in an adenocarcinoma biopsy (right) have been
mixed in silico using random coefficients. In both cases, the mixtures
were successfully deconvolved. Aberrations are grouped within the
boxes according to the order of occurrence. The reconstructed evolu-
tionary trees suggest intermediate (white boxes), probably rare,
subclones that were not reported in the cytogenetic data.
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too large to be fully sequenced, or when the loci analyzed
are distributed on different chromosomes (e.g. sequences
from both Immunoglobulin heavy and light chains).

Analysis of tumor biopsies

Comparison between subclonal aberration profiles inferred
from heterogeneous cell populations and single-cell
aberration profiles
We analyzed data from a recent study on renal cell car-
cinoma where two aggregate samples and 20 single cells
were isolated from a ccRCC and subjected to exome
sequencing. Interestingly, the original study only showed
partial similarity between the single cells and the aggregate
(64). However, because the single cells and the aggregate
used in the experiments are from the same tumor, we
sought to investigate whether any subclones inferred by
TrAp would share a similar combination of mutations
found in any of the single cells.
We applied our TrAp algorithm to the aggregate sample

and obtained an evolutionary tree consisting of three main
subclones. Due to the lack of extensive validations, we
limited ourselves to investigate whether mutations that
co-occur in the TrAp solution also co-occur in single-cell
samples. We considered the mutations that were
validated by bioinformatics analysis [Supplementary
Table S3A from Xu et al. (64)] and by PCR validation
[Supplementary Table S3B from Xu et al. (64)]. The
fraction of correctly estimated co-occurrences was 0.76
for mutations validated by bioinformatics analysis and
0.74 for mutations validated by PCR.

AML data

Next, we used our TrAp algorithm to investigate the
clonal evolution of eight AML patients. For each
patient, three samples (normal, tumor, relapse) were col-
lected and sequenced by Ding et al. (18). Minor allele
frequencies of somatic mutations were estimated from
the sequencing data [Supplementary Tables S5a and
S6a–g from Ding et al. (18)] and clustered using
MCLUST for patient UPN933124 [Supplementary Table
S5c from Ding et al. (18)] or Kernel Density Estimation
for the other seven patients [Supplementary Table S10
from Ding et al. (18)]. Since the frequency of each
cluster was estimated by the median, we used median
absolute deviation and a default scale factor of 1.4826 to
estimate confidence intervals under the assumption of an
underlying normal distribution (135). The aggregate signal
yi and measurement error ei for each cluster of mutations i
were then estimated as

yi ¼Medianðyj2iÞ; ei ¼ 1:4826�MADðyj2iÞ, ð5Þ

where yj is the estimated aggregate signal of mutation j.
The clonal evolutions inferred by the TrAp algorithm

(Supplementary Figures S6–S13) are in agreement with
those inferred by Ding et al., who used deductive reason-
ing to manually derive the subclonal evolution (18). This
agreement was expected as all the observations used
by Ding et al. to generate the evolutionary trees are
corollaries of our evolutionarity and sparsity constraints
and are therefore automatically enforced by the TrAp

method. In addition, the TrAp program listed all evolu-
tionary trees compatible with the input data and provide
additional insights on the possible origin of sublclones in
the relapses of patient UPN758168 (Supplementary Figure
S7) and UPN452198 (Supplementary Figure S10).

Melanoma data

Finally, we applied our algorithm to investigate evolution-
ary mechanisms in tumor metastases using exome
sequencing data from three tumor metastases (TM1: left
lateral chest wall, TM4: pleural cavity and TM3: right
axilla) and a matched normal sample (N: left lateral
chest wall) of one melanoma patient (121). TrAp can effi-
ciently handle aggregate signal vectors of �20 unique
frequencies and therefore we perform deconvolution
analysis only on one chromosome. We selected chromo-
some 18, as it contains the tumor suppressor DCC gene,
which is known to exhibit a high load of mutations only in
melanoma (136), in contrast to low expression, loss of
heterozygosity or epigenetic silencing in other tumors.

To apply the TrAp algorithm, we first preprocessed the
data and selected 19 mutations on chromosome 18 (see
‘Materials and Methods’ section). We labeled each
mutation according to the gene affected and the amino
acid change caused by the mutation (e.g. the label
DCC.L1099H indicates a mutation in the DCC gene
that causes a mutation from a Leucine to a Histidine at
position 1099 in the DCC protein). There are six muta-
tions with >99% frequency in all samples (including the
normal): ADNP2.G54G, ALPK2.I2157V, CD226.S307G,
DCC.F23L, NETO1.S481N and SLC39A6.E119D. The
only other mutation found in the normal sample was
TCEB3CL.S301C, which occurs with frequency >90%
in all samples. Moreover, the mutations ALPK2.R136S,
CHST9.S122N, FAM38B.V2463, LAMA1.S1577A,
LAMA1.K2002E, MYOM1.T215M, SERPINB10.
R246C and SLC14A2.A880T were found in all three
tumor samples and shared a similar frequency profile.
The mutations DSC3.A28D, DSG1.M11V and
IMPACT.D125E were found only in the metastases
samples TM3 and TM4 and shared a similar frequency
profile. Finally, the mutation DCC.L1099H was found
only in the sample TM3.

Since none of the genomic positions analyzed contained
polyallelic mutations, we assigned a binary state (normal/
mutated) to each selected genomic position and we
estimated the aggregate signal and measurement error
for each mutation event using a normal approximation as

yi ¼
mi

ni
; ei ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yið1� yiÞ

ni

s
ð6Þ

where ni is total the number of reads covering position i,
and mi is the number of reads with a mutation in position
i. Finally, the y and e vectors were used as input for the
TrAp algorithm. We run the TrAp algorithm using the
normal error model option.

Independent runs on the three metastatic samples gave
33 optimal solutions for TM1, 222 for TM3 and only 1
TrAp solution for TM4. These high numbers of solutions
are due to the substantial noise of the experiment (in the
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range 0.005–0.025) and the fact that in samples TM1 and
TM3, two of the subclones have similar frequencies and
are thus difficult to separate from one another. However,
TrAp identified a unique solution in the sample TM4,
where the three populated subclones are distributed with
significantly different frequencies (Figure 7 middle). Next,
we reasoned that the metastatic TM1, TM3 and TM4
samples may share common ancestors and that their evo-
lutionary profiles may be related. We then applied our
TrAp algorithm while also imposing that all evolutionary
trees must be a subset of one global evolutionary tree. This
approach returned a unique solution for each sample, all
of which were among the solution sets identified in the
previous analyses. We observe that this approach can be
very powerful because, in principle, it allows the recon-
struction of large trees by combining several snapshots of
the related subclonal populations.

The results of the deconvolution are shown in Figure 7.
We observe the presence of two main branches. Mutations
in the left branch of TM4 (77%) are more abundant
than in TM1 and TM3 (48%). We note that Laminin,
alpha 1 (LAMA1), a protein that is involved in cell
adhesion, is present in the right branch. 44% (19%) of
the subclones of TM3 (TM4) have mutations in
Desmocollin-3 (DSC3), Desmoglein-1 (DSG1) and
Impact RWD Domain Protein (IMPACT). The TM3
subclone also acquires a second mutation in the DCC
gene (DCC.L1099H-L) in addition to the mutation
DCC.F23L, which was hereditary. The novel mutation
in the DCC gene occurs close to the boundary between

the extracellular domain and the transmembrane domain
of the protein product. The resulting Histidine amino acid
is positively charged, opposed to the Leucine amino acid
of the wildtype, which is neutrally charged. Since this
change is next to the cell membrane, it may have reper-
cussions on the functionality of the DCC protein product,
perhaps causing inactivation, similar to the inactivation
caused by loss of heterozygosity and transcript suppres-
sion observed in other cancer types.

DISCUSSION

In the present study, we described the TrAp algorithm, a
tool for inferring subclonal composition and abundance
from a single aggregate measurement experiment. As we
have shown, TrAp is robust to noise and it can deconvolve
mixtures where multiple mutations occur at the same
locus. TrAp efficiently enumerates all possible solutions
that are compatible with the model constraints, thus
always identifying the sparsest and most parsimonious
solution(s). However, TrAp will also generate trees [cf.
Supplementary Equation (S1)] in cases where no tree
structure can be inferred. As we have shown, such struc-
tures, while deviating from the true underlying population
structure, can still capture relevant co-occurrences of mu-
tations that are specific to certain subclones. Further, in
contrast to parsimonious neighbor-joining approaches,
which rely on sampling single subclones from the popula-
tion (e.g. single-cell experiments), TrAp uses aggregate ex-
periments as input, thus overcoming the issue of small

Figure 7. Evolutionary trees inferred from three metastases of a melanoma patient. Each subclone in these trees is represented by a box with a list of
mutations that includes only its new mutations (ancestral mutations can be read off by tracing back the mutation lists of all of its ancestors).
Mutations are labeled according to the gene affected and the amino acid change caused by the mutation (e.g. the label DCC.L1099H indicates a
mutation in the DCC gene that causes a mutation from a Leucine to a Histidine at position 1099 in the DCC protein). Highly expressed genes from
this patient are indicated in bold. Mutations in the left branch of TM4 are more abundant than in TM1 and TM3. 44% (19%) of the subclones of
TM3 (TM4) have mutations in DSC3, DSG1 and IMPACT. The TM3 subclone has an additional mutation in DCC.
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sampling size, which may be insufficient to cover the
whole spectrum of subclones in a sample. We successfully
deconvolved systems of up to 25 aberrations. Although
this number is not large enough to consider all somatic
mutations found in a tumor sample, this problem can be
circumvented by clustering aberrations with similar
frequencies before running the TrAp algorithm.
The level of characterization achieved by subclonal de-

convolution holds high potential for personalized
therapies. Possible applications include the classification
of subclones in primary tumors, the identification of the
seeds of metastases, tracing of resistant subclones espe-
cially after drug treatments and developing treatment
strategies to eliminate resistant subclones. Furthermore,
our proposed model can be applied to other medical
problems, such as tracing bacterial or viral paths of adap-
tation within the infected host, detailed genome-wide re-
construction of the epigenetic differentiation program or
class specification in the hematopoietic system or in other
systems.
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68. Sjö,L.D., Poulsen,C.B., Hansen,M., Møller,M.B. and Ralfkiaer,E.
(2007) Profiling of diffuse large B-cell lymphoma by
immunohistochemistry: identification of prognostic subgroups.
Eur. J. Haematol., 79, 501–507.

69. Varma,M. and Jasani,B. (2005) Diagnostic utility of
immunohistochemistry in morphologically difficult prostate
cancer: review of current literature. Histopathology, 47, 1–16.

70. Yamamoto,N., Yang,M., Jiang,P., Xu,M., Tsuchiya,H.,
Tomita,K., Moossa,A.R. and Hoffman,R.M. (2003)
Determination of clonality of metastasis by cell-specific color-
coded fluorescent-protein imaging. Cancer Res., 63, 7785–7790.

71. Attolini,C.S.O. and Michor,F. (2009) Evolutionary theory of
cancer. Ann. N. Y. Acad. Sci., 1168, 23–51.

72. Navin,N., Krasnitz,A., Rodgers,L., Cook,K., Meth,J., Kendall,J.,
Riggs,M., Eberling,Y., Troge,J., Grubor,V. et al. (2010) Inferring
tumor progression from genomic heterogeneity. Genome Res., 20,
68–80.

73. Halaban,R., Zhang,W., Bacchiocchi,A., Cheng,E., Parisi,F.,
Ariyan,S., Krauthammer,M., McCusker,J.P., Kluger,Y. and
Sznol,M. (2010) PLX4032, a selective BRAFV600E kinase
inhibitor, activates the ERK pathway and enhances cell migration
and proliferation of BRAFWT melanoma cells. Pigment Cell
Melanoma Res., 23, 190–200.

74. Banerji,S., Cibulskis,K., Rangel-Escareno,C., Brown,K.K.,
Carter,S.L., Frederick,A.M., Lawrence,M.S., Sivachenko,A.Y.,
Sougnez,C., Zou,L. et al. (2012) Sequence analysis of mutations
and translocations across breast cancer subtypes. Nature, 486,
405–409.

75. Matsushita,H., Vesely,M.D., Koboldt,D.C., Rickert,C.G.,
Uppaluri,R., Magrini,V.J., Arthur,C.D., White,J.M., Chen,Y.S.,
Shea,L.K. et al. (2012) Cancer exome analysis reveals a T-cell-
dependent mechanism of cancer immunoediting. Nature, 482,
400–404.

76. Varela,I., Tarpey,P., Raine,K., Huang,D., Ong,C.K., Stephens,P.,
Davies,H., Jones,D., Lin,M.L., Teague,J. et al. (2011) Exome
sequencing identifies frequent mutation of the SWI/SNF complex
gene PBRM1 in renal carcinoma. Nature, 469, 539–542.

77. Alexandrov,L.B., Nik-Zainal,S., Wedge,D.C., Campbell,P.J. and
Stratton,M.R. (2013) Deciphering signatures of mutational
processes operative in human cancer. Cell Rep., 3, 246–259.

78. Lee,D.D. and Seung,H.S. (1999) Learning the parts of objects by
non-negative matrix factorization. Nature, 401, 788–791.

79. Hyvärinen,A. (1999) Fast and robust fixed-point algorithms for
independent component analysis. IEEE Trans. Neural. Netw., 10,
626–634.

80. Attias,H. (1999) Independent factor analysis. Neural. Comput., 11,
803–851.

81. Li,J.J., Jiang,C.R., Brown,J.B., Huang,H. and Bickel,P.J. (2011)
Sparse linear modeling of next-generation mRNA sequencing
(RNA-Seq) data for isoform discovery and abundance estimation.
Proc. Natl Acad. Sci. USA, 108, 19867–19872.

82. Gong,T., Hartmann,N., Kohane,I.S., Brinkmann,V., Staedtler,F.,
Letzkus,M., Bongiovanni,S. and Szustakowski,J.D. (2011)
Optimal deconvolution of transcriptional profiling data using
quadratic programming with application to complex clinical blood
samples. PLoS One, 6, e27156.

83. Repsilber,D., Kern,S., Telaar,A., Walzl,G., Black,G.F., Selbig,J.,
Parida,S.K., Kaufmann,S.H.E. and Jacobsen,M. (2010) Biomarker
discovery in heterogeneous tissue samples -taking the in-silico
deconfounding approach. BMC Bioinformatics, 11, 27.
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