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ABSTRACT

The most important mechanism in the regulation of
transcription is the binding of a transcription factor
(TF) to a DNA sequence called the TF binding site
(TFBS). Most binding sites are short and degener-
ate, which makes predictions based on their primary
sequence alone somewhat unreliable. We present a
new web tool that implements a flexible and exten-
sible algorithm for predicting TFBS. The algorithm
makes use of both direct (the sequence) and
several indirect readout features of protein–DNA
complexes (biophysical properties such as
bendability or the solvent-excluded surface of the
DNA). This algorithm significantly outperforms
state-of-the-art approaches for in silico identifica-
tion of TFBS. Users can submit FASTA sequences
for analysis in the PhysBinder integrative algorithm
and choose from >60 different TF-binding models.
The results of this analysis can be used to plan and
steer wet-lab experiments. The PhysBinder web tool
is freely available at http://bioit.dmbr.ugent.be/
physbinder/index.php.

INTRODUCTION

Proteins called transcription factors (TFs) are crucial for
proper regulation of gene expression. They function by
binding to regions of DNA called transcription factor
binding sites (TFBS). Two different mechanisms contrib-
ute to the TF–DNA binding specificity needed for correct
regulation of gene expression: a direct readout component
caused by direct contact between the amino acids of the
protein and the bases of the DNA and an indirect readout
component caused by the global shape of the DNA and by

conformational changes in both interaction partners (1,2).
Traditional methods for predicting TFBS tend to look at
the direct readout component alone and almost exclu-
sively at the primary sequence. However, many of these
widely used methods, such as positional weight matrices,
are afflicted by many false positive predictions, indicating
the need for incorporating other discriminative features
(3). Recent evidence shows that sequence-dependent struc-
tural variations in the DNA account for a significant
portion of the protein–DNA specificity (4–6). Thus, it is
expected to be beneficial to include structural features
and nucleotide dependencies in the prediction models.
In a recent publication, we examined the effect of
incorporating nucleotide position dependencies, which
are related to the 3D structure of the DNA (7), on the
prediction of TFBS (8). We also calculated structural
features of the DNA and verified to which extent these
features improve the prediction of TFBS. We found that
incorporation of both types of data can substantially
enhance the prediction of TFBS. Here, we present
PhysBinder, a web tool based on the flexible Random
Forest algorithm published in (8). We compiled >60 ver-
tebrate TF models from various sources, but many more
models will be offered in the future, as new data become
available. Binding sites for these models can be visualized
together with the ENCODE TFBS data track of UCSC
genome (9) to get a useful insight in the genomic context
of the inspected region.

INPUT AND OUTPUT

Input

The PhysBinder web tool is easy to use: for most param-
eters, we offer default configurations to ensure a quick
and easy workflow. Users just provide their sequences of
interest and select the appropriate TF model information.
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Sequences can be uploaded by one of the following means:
(i) pasting a set of FASTA-formatted sequences in
the input field; (ii) uploading a file with FASTA-formatted
sequences; (iii) indicating genomic regions in the ‘Fetch
genomic regions’ text field. Subsequently, a model and
a threshold are to be selected. We provide three pre-
calculated thresholds: ‘Max. Precision’, ‘Max.
F-Measure’ and an average of these two measures.
A custom threshold can also be selected.
More than 60 different TF models are now available on

the PhysBinder website, but we expect to provide more
models, as additional data become available. Most of
the PhysBinder models are compiled from recent
ENCODE data (10), but other sources were also used
(see Materials and Methods for more information). TF
models constructed from sequences that, according to
the literature, clearly contain a sequence element
associated with the TF are called ‘direct evidence’
models. When an alternative consensus sequence is
found or when no consensus sequence is known for a par-
ticular TF, we call the models ‘putative associated factors’
(PAFs). Such a PAF might be a TF binding to multiple
sequence elements, or it might be a common cofactor
(hence ‘putative associated factor’). By default,
PhysBinder is configured to run in filter mode to speed
up the calculations. In this mode, sequences are pre-
filtered with a short positional weight matrice with low
thresholds, minimizing the number of false-negative hits
and effectively guaranteeing maximum recall.

Output

A summary table is given at the top of the results web
page. This table can be sorted by model type or by input
sequence, and, for each model or sequence, the number of
hits is indicated. On this page, users can still alter the
thresholds to increase or decrease the stringency of the
binding site predictions. In the results section, binding
sites are shown as sequences with a colored background
(exemplified in Figure 1a). Clicking on the first nucleotide
of such a colored sequence provides more details on the
binding site. When clicked, a details window with the
sequence logo of the binding site is shown (this logo was
calculated on the model data), and the Random Forest
score with a P-value is given as well. The relative
position of the TFBS is shown, and if the genomic
location of the sequence is known (because the user
indicated this on the input page or performed a BLAT
analysis of the sequence against a human or mouse refer-
ence genome), then the absolute coordinates of the
binding sites are shown in the details window. Two add-
itional options become available when the absolute
position is known. For human sequences (hg18 and
hg19), it is possible to integrate the most recent
ENCODE data to get an overview of the transcription
factors and RNA polymerase components that might
bind within this genomic region. Predicted binding sites
can also be visualized in the UCSC genome browser (11)
(exemplified in Figure 1b). Using the aforementioned
checkboxes, the sequences or those on the right side of
the screen, models can be dynamically shown or hidden
to aid the interpretation of the results.

Example

As an example (see Figure 1), we examined the analysis
performed by Kyo et al. (12) of the promoter of the
human TERT gene, encoding the catalytic subunit of tel-
omerase. These researchers identified a core promoter of
181 bp responsible for the transcriptional activity of the
TERT gene. This 181-bp region, consisting of the 5’-UTR
and the upstream promoter region, contains two E-boxes
bound by MYC in vivo. Between these E-boxes, Kyo et al.
discovered and validated five GC-boxes that are bound by
SP1. For illustrative purposes, we used the PhysBinder
tool to look for SP1, MYC and TBP binding sites with
default threshold settings in the same sequence they used
(12), and we were readily able to confirm their findings.
We unmistakably found the five SP1 binding sites flanked
by two MYC binding sites, as reported in the initial pub-
lication. No TATA-box was found, and this promoter was
reported to lack such box (13).

TECHNICAL DETAILS

Web tool

The web tool is hosted on a Linux CentOS 5 server with 32
GB of RAM, an Apache 2.2.3 web server, and PHP version
5.1.6. Web pages are written in the PHP and Javascript
scripting languages. To map input sequences to mouse
(mm10) or human (hg19) reference genomes, we use
gfServer and Client binaries from UCSC, which makes it
possible to BLAT sequences (11). ENCODE tracks are
obtained from UCSC Genome (9). Sequences can be
fetched from 16 different species, obtained from UCSC
Genome. Extensive help documentation is available on
the PhysBinder website, including guidelines and tutorials
to facilitate the interpretation of the PhysBinder results.

Backend and models

The backend of PhysBinder is programmed in a combin-
ation of Perl and R-script. The Random Forest classifier
used in the backend is the ‘FastRandomForest’ implemen-
tation. This is a multithreaded implementation of the
Random Forest classifier in the Weka statistical package
(14). In our models, we use a Random Forest with 100
trees. Most models are built from available ENCODE
data of tier 1 cell lines, except for Esrrb (15), ETS1 (16),
KLF4 (15), NANOG (15), Nmyc (15), STAT3 (15), TBP
(17), Tfcp2l1 (15), TP53 (18) and Zfx (15). All sequences
were first aligned using the multiple EM (expectation
maximization) for motif elicitation (MEME) motif
aligner (19) on the STEVIN supercomputing infrastruc-
ture of Ghent University. To ensure the quality of input
data, the resulting aligned sequence motifs were then
manually searched for in the literature. If a motif is not
yet reported in literature, the resulting model is called a
PAF. Otherwise, the model is termed a direct evidence
model. When available, 100 sequences were used to
build the model. The other sequences were used for valid-
ation. More information on the different steps of the al-
gorithm and on its validation has been reported by us
previously (8). Details about all models are available on
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Figure 1. Example output of the PhysBinder tool. All predicted TFBS match the experimentally determined locations reported by Kyo et al. (12).
(a) Detail of the results window: MYC binding sites (E-box) [HSA0000004.1] are shown in red. SP1 binding sites (GC-box) [HSA0000031.1]
are shown in green. The default threshold (‘Average’) was used for both models. Gray shaded bars indicate overlapping ENCODE tracks (9).
The checkboxes below the sequence indicate the different ENCODE tracks visualized in this sequence. (b) Both models were visualized in the UCSC
Genome Browser (11). MYC binding sites are indicated in blue, whereas SP1 binding sites are in red.
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the ‘models’ page, where an overview can be found of all
the features contained in the models, together with per-
formance measures that were calculated on external test
sets.
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