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ABSTRACT

The evolutionary history of all life forms is usually
represented as a vertical tree-like process. In pro-
karyotes, however, the vertical signal is partly
obscured by the massive influence of horizontal
gene transfer (HGT). The HGT creates widespread
discordance between evolutionary histories of dif-
ferent genes as genomes become mosaics of gene
histories. Thus, the Tree of Life (TOL) has been
questioned as an appropriate representation of the
evolution of prokaryotes. Nevertheless a common
hypothesis is that prokaryotic evolution is primarily
tree-like, and a routine effort is made to place new
isolates in their appropriate location in the TOL.
Moreover, it appears desirable to exploit non–tree-
like evolutionary processes for the task of microbial
classification. In this work, we present a novel tech-
nique that builds on the straightforward observation
that gene order conservation (‘synteny’) decreases
in time as a result of gene mobility. This is particu-
larly true in prokaryotes, mainly due to HGT. Using a
‘synteny index’ (SI) that measures the average
synteny between a pair of genomes, we developed
the phylogenetic reconstruction tool ‘Phylo SI’.
Phylo SI offers several attractive properties such
as easy bootstrapping, high sensitivity in cases
where phylogenetic signal is weak and computa-
tional efficiency. Phylo SI was tested both on
simulated data and on two bacterial data sets and
compared with two well-established phylogenetic
methods. Phylo SI is particularly efficient on short
evolutionary distances where synteny footprints
remain detectable, whereas the nucleotide substitu-
tion signal is too weak for reliable sequence-based

phylogenetic reconstruction. The method is publicly
available at http://research.haifa.ac.il/ssagi/soft
ware/PhyloSI.zip.

INTRODUCTION

The ever decreasing sequencing costs, and improvements
in assembly algorithms and automated annotation have
resulted in thousands of bacterial genomes that are
being sequenced each year. In fact, cheaper smaller
sequencing machines (the so called ‘personal genome se-
quencers’) are now finding their way to more and more
research laboratories and clinics. However, in many cases,
to accurately taxonomically place a new isolate remains a
serious challenge. Ribosomal RNA genes often do not
provide sufficient phylogenetic resolution or show intra-
genomic variability, and thus whole-genome data should
ideally be used, but deriving taxonomy from these data
can be difficult. Selecting multiple house-keeping genes
and concatenating them, aligning them with similar con-
catenations from other bacteria and reconstructing
phylogenies requires substantial knowhow, and still has
significant drawbacks and cannot always fully resolve
the position of the new taxon on the tree (1,2). Ideally,
one would harness the whole genomic information and
increase the phylogenetic signal, but genomes of bacteria
and archaea are characterized by numerous horizontal
gene transfer (HGT) (3–6). Thus, different genes in the
genome can have different evolutionary histories and con-
flicting phylogenetic signals, so lumping them together
could result in inaccurate organismal phylogenies.
Whether prokaryotic evolution should be portrayed by

a vertical single ancestor process or as a network of an-
cestral relationship, is among the most controversial in
microbial evolution (3,7). Views range from one extreme,
claiming that, due to HGT, a single tree is far from
adequately representing microbial evolution (4,8), to the
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other extreme that HGT is insignificant in terms of its
overall impact on the evolutionary process (1,9,10).
Nevertheless, even without taking a side in this dispute,
the growing need to classify new genomic data conse-
quently imposes a need to develop new efficient classifica-
tion techniques. Hence, it would be desirable to harness
the non–tree-like evolutionary processes for the goal of
classification (11).
We distinguish between ‘sequence (or nucleotide)-based’

and ‘gene-based’ phylogenetic methods. In sequence based
methods, orthologous sequences, that is, sequences hom-
ologous via speciation (12), from various organisms are
used to infer the evolutionary history of the corresponding
gene. These methods were the first to be used in molecular
systematics thanks to the strong correlation between
histories of many evolutionarily conserved genes and the
organisms analyzed, mainly animals and plants (13,14). In
contrast, the gene-based phylogenetics is a genome-wide
approach, where a coarser resolution is used in a broader
view. Here, relations between the genomes as sets of genes
are exploited to infer similarity (or dissimilarity) between
organisms. This work focuses on this family of phylogen-
etic approaches.
Historically, although the gene-based approaches are

more recent than the sequence-based approaches, they
were suggested and have been in use for more than two
decades. The gene-based family of methods can be further
divided into two main subfamilies: gene order–based and
gene content (GC; presence/absence)–based techniques.
Perhaps the most prominent among the gene order tech-
niques is the genome rearrangement approach that defines
the ‘distance’ between genomes as the number of oper-
ations (i.e. rearrangement events) required to turn one
genome into another. The pioneering studies of Sankoff
and colleagues (15,16) were the first to construct
phylogenies based on this type of data. However, they
were preceded by other studies pointing to the linkage
between genome rearrangement events and evolutionary
relatedness, starting with the classical work of
Dobzhansky and Sturtevant on inversions in Drosophila
chromosomes (17) and several others thereafter (18).
There has been a wealth of mathematical and biological
extensions to the initial model, with more operations and
finer algorithms and analysis [see (19–23) among many]
including available software (24,25). This gene rearrange-
ment approach assumes a stable set of genes and cannot
readily model events of gene gain/loss (26). When organ-
isms liable to the latter type of events are analyzed, genes
acquired via HGT are removed and the analysis is done
only on the set of genes present in all species (27)
(although some new models, e.g. (28), do account for
such events but, to the best of our knowledge, no
software was produced). The other GC-based approach,
the GC approach that is more suitable for the study of
prokaryotic evolution, is based on the presence/absence
of orthologous genes (29–31). Here the order between
the location of the genes on the chromosome is ignored
and hence a randomly permuted genome is indistinguish-
able (zero distance) from the original genome. An advan-
tage of this method over the gene order technique is
its speed and hence its ability to analyze larger sets of

organisms and genes. Other intermediate gene-based
approaches have been proposed between the two
extremes of complete order dependent and presence/
absence (32–34). In addition, genome-wide sequence-
based methods have been developed such as Average
Nucleotide Identity (35) or average BLAST scores (36).
However, these methods generally did not perform
better than gene sequence–based methods, such as those
based on the 16S-rRNA (36).

In (26), several of the above approaches were compared
for their ability to resolve prokaryotic evolution. The
authors concluded that ‘extension of phylogenetic
analysis to the genome scale has the potential of uncover-
ing deep evolutionary relationships between prokaryotic
lineages’. Further, in (34) it is noted that ‘HGT could
significantly affect trees reconstructed using any method
of genome composition analysis’. Importantly, a study
using gene-order information (37) tracked genome-wide
synteny loss between closely related prokaryotes. This
approach, conceptually similar to the one we present
here, showed that loss of synteny as a result of genome
rearrangement events, is very strongly correlated with
amino acid distance.

Taking into consideration the developments discussed
above, a novel gene-based technique, ‘Phylo SI’, is
proposed here that is most efficient for closely related or-
ganisms. Phylo SI combines the two existing gene-based
approaches, gene order and GC, and aims to trace specific
events that are typical of the evolution of prokaryotes with
higher sensitivity. The idea relies on the dynamic nature of
prokaryotic genomes, with intensive genome mobility, re-
sulting in high rates of HGT. The footprint of this activity
in the specific genome architecture, is a patchy phyletic
pattern (38) in which a genome contains DNA patches
from several different ancestral sources. The proposed
technique builds on a new measure that we define as the
‘synteny index’ (SI) between two genomes (species). Gene
synteny (39,40) is the conservation of gene order across
species along the evolutionary course (It is worth noting
that ‘synteny’ in the strictest sense means only that genes
are present on the genome; however, we here use the
common sense of conserved linkage.). The SI measures
how much a gene that is orthologous in the two
compared species is in its ‘natural place’, or in other
words, shares the same neighborhood in both genomes.
During evolution, a genome undergoes events of large
scale reorganization, such as gene gain/loss, duplication
and translocation, causing a degradation in the synteny
among the genomes (41). Although synteny over several
genes may not be informative systematically, aggregating
synteny data over whole genomes enables a fairly accurate
estimation of the evolutionary distance between organ-
isms. Notably, the traditional sequence-based phylogen-
etic analysis is heavily dependent on identification of
orthologous genes among species [e.g. Clusters of
Orthologous Groups database (COGs) (42)], correct
multiple alignment of the sequences (43) and eventually,
accurate phylogenetic reconstruction (44). Our method is
independent of most of these tasks (although orthology
identification is also a crucial part in this case, inaccuracies
may be alleviated by using large sets of gene families).
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Among the main advantages of the new method, is its easy
and efficient implementation, high sensitivity in cases
where mutation signal may be too weak for highly
conserved genes that are normally used in phylogenetics,
lack of model assumptions, aggregation of information
across the whole genome and simple implementation of
bootstrapping to obtain statistical support for the
observed branches. Moreover, the proposed method
allows one to trace the evolution of the genome architec-
ture, where species with similar architectures (in terms of
synteny and GC) are considered related.

We implemented the proposed method in software and
tested it in both simulation and real genomic data analysis.
In the simulation study, we compared the method with
both GC and gene order techniques, and with an inter-
mediate technique, ‘gene pairs’. A clear advantage was
demonstrated over the competing methods, in particular
in the analysis of closely related species. In the real
genomic data study, the method was meticulously tested
on two bacterial data sets. In the first data set, the
groupings identified by Phylo SI are in significant agree-
ment with standard phylogenetic approaches such as the
highly popular Interactive Tree Of Life (iTOL) tool (1),
and the AutoMated PHylogenOmic infeRence
Application for large-scale protein phylogenetic analysis
(AMPHORA) suit (2) that use a multitude of house-
keeping genes. However, Phylo SI was also able to
identify organisms with exceptional genome architecture
that were not singled out by the standard approaches. In
the second data set, Phylo SI resolved several uncertain
relationships, such as in the Brucella clade, which could
not be identified by the other approaches due to their
weaker phylogenetic signal.

The method with an accompanying documentation and
the data used for this study is available at http://research.
haifa.ac.il/ssagi/software/PhyloSI.zip. Supplementary
material used in this study is available at http://research.
haifa.ac.il/ssagi/SI/sup.zip

MATERIALS AND METHODS

Preliminaries

A genome is a sequence of genes ðg1,g2, . . . ,gnÞ and each
gene is a sequence of DNA letters. That is, our view of a
genome is at a resolution of genes, and of a gene at a
resolution of nucleotides (see Figure 1). The ‘k-neighbor-
hood’ of a gene g0 in genome G, NkðG,g0Þ is the set of
genes at distance at most k from g0 in G (i.e. at most k
genes upstream or downstream). The conservation of gene
order between two genomes is called ‘synteny’. Let g0 be a
gene common to two genomes Gi,Gj. Then the ‘k synteny
index’ (k-SI), or just SI when it is clear from the context,
of g0 in Gi,Gj is the number of common genes in the

k-neighborhoods of g0 in both Gi and Gj: SIðg0,Gi,GjÞ ¼

jNkðGi,g0Þ \NkðGj,g0Þj. We note that in cases of circular
genomes, a genome is broken arbitrarily at some location
and the k-neighborhood should be taken accordingly (i.e.
circularly). For the sake of completeness, for g0=2Gi \ Gj,
SIðg0,Gi,GjÞ ¼ 0. See Figure 2 for illustration.
A genome undergoes events of gene gain and loss in

which genes are added or removed respectively. These
events produce variation over the gene repertoire of the
various genomes. A HGT is defined as an event in which a
gene of a genome, the ‘donor genome’, is copied and
inserted at some position in another genome, the ‘recipient
genome’. Because we view the genome as a sequence of
genes (see Figure 3), the new gene is always between two
genes (or at the ends of the genome).

SI-based phylogenies

We start this part with an overview of the method
proposed. In the event of HGT, a gene is being inserted
at the recipient genome. That gene either did not exist in
the recipient genome or has functionally replaced the old
copy (otherwise it is not considered HGT by our defin-
ition). The probability that the gene maintains in the re-
cipient genome its old k-neighborhood, or even part of it,
in the donor is at the order of k

n. As we choose k << n, this
probability is small. The above can be extended to the case
of HGT of operons or gene clusters, in which a sequence
of neighboring genes with a similar or related function,
located next to each other in the genome, are being
copied. Therefore, SI of a specific gene gives a measure
of the likelihood of that gene being horizontally
transferred. Nevertheless, synteny between genomes de-
creases with time as a result of large-scale mutational
events. Thus, when the whole genome has low SI, we
cannot take low SI of a certain gene as indicative for
HGT. However, we can use the SI to measure distances
between the genomes exposed to high HGT activity. We
seek a measure that will consider the SI of all genes in the
genome.

DEFINITION 1
Given two genomes G1,G2, and let G be the set of genes in
at least one genome, G ¼ G1 [ G2. Then the average k-SI
between G1 and G2 is defined by

SIkðG1,G2Þ ¼
1

jGj

X
g2G

SIkðgÞ

2k
ð1Þ

We observe that for two identical genomes,
SIkðG1,G1Þ ¼ 1, and for two genomes with disjoint sets
of genes, SIkðG1,G2Þ ¼ 0. The ‘SI’ therefore gives us a
measure of similarity between pairs of species, which we
can use to construct evolutionary trees over the whole set
of species. This property is attractive in particular for the

Figure 1. A genome is viewed as a sequence of genes, while a gene is a sequence of nucleotides.
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organisms we investigate, as they are subjected to heavy
HGT activity resulting in different histories for different
sets of genes. Therefore, a method considering the aggre-
gate set of genes is required. It is important to note here
that the SI for a gene is not binary, i.e. either 1 or 0, as a
result of being transferred or not. Genes can have SI
values that range anywhere between 1 and 0 as a result
of either being transferred with part of their original
neighborhood, or they could have kept their original
neighborhood, but that neighborhood was additionally
affected by other HGT events.

When applying SI between all species, we obtain a simi-
larity measure between the set of species. We can use
this measure for phylogenetic reconstruction if we
convert it to distances between the species. Hence we
define ½D�i,j ¼ 1� SIkðGi,GjÞ as our distance metric. Note
that every entry in D is between zero and one. Once we
have the distance matrix D, we can use it to construct a
phylogeny from it. Distance-based phylogenetic recon-
struction methods receive as input a symmetric dissimilar-
ity matrix, representing dissimilarities between the taxa set
under study, and strive to return a tree over the taxa set,
such that tree distances (i.e. the path lengths) between the
leaves, best approximate the distances in the matrix (see
more details in the Supplementary Text). For our task, we
used the neighbor-joining (NJ) (45) algorithm imple-
mented in the Phylip package (46).

Bootstrap

To perform bootstrap analysis, we devised the following
approach to allow bootstrap for the new method: for
every pair of genomes Gi,Gj from the genome set G, we
constructed the SI distribution f(SI), where, for
0 � x � 2k, f(x) holds the number of genes in the union
set of genes Gi [ Gj with SI= x. Next we conducted a
weighted sampling from that distribution with number
of samples jGi [ Gjj. Having done so for all pairs, we
obtain the ‘bootstrap SI matrix’ from which we built the
tree. A more detailed description is found in the
Supplementary Text.

Simulation procedure

We used simulations to compare the new SI based-method
to other comparable methods operating on genomic data.
Here we briefly describe the simulation procedure. A fuller
description of the algorithm can be found in the
Supplementary Text. Our basic assumption is that the
gene gain and loss are time-dependent Markovian events
with some constant rate, operating on the species (47).
Therefore, we generated a random ultrametric species
tree by the Yule process (48) describing the speciation
history of the species set. Edge lengths in this tree repre-
sent the expected time until an event under a Poisson
process and hence were distributed exponentially with par-
ameter ‘. Based on this species tree, we simulated a
Poisson process of gene gain/loss with a constant rate of
events. We start with an ancestral genome as a string of
genes at the root of the species tree. Events were generated
on an edge with probability proportional to the time
between speciation (edge length). Once an event is
generated, with probability pHGT it is a gene gain and
with probability 1� pHGT it is a loss.

As gene gain may sometimes result in a replacement
rather than a real gain, we tried to calibrate the param-
eters such that our genomes do not shrink too much at the
leaves.

Therefore, the input to the competing methods included
the resulting genomes at the leaves, and the trees recon-
structed by the various methods were compared with the
model species tree.

Tree similarity measures

There are several approaches to measure similarity
between phylogenies. These are normally used in simula-
tion studies where the ‘true’ model tree is known and the
accuracy of the reconstruction method is measured by the
distance of the reconstructed tree to the model tree. There
are several tree metrics. We chose the most common ones:
(1) ‘Robinson-Foulds (RF) Symmetric Difference’ (49)
counts the number of different edges between two trees
implemented in Phylip (46). We used a variant measuring
similarity instead of difference. (2) ‘Maximum Agreement

Figure 3. Gene d was transferred from Donor species G1 to recipient species G2.

Figure 2. Comparing G1 with G2 for k=3: SIðg,G1,G2Þ ¼ 3, SIðx,G1,G2Þ ¼ 0, SIð‘,G1,G2Þ ¼ 0.
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Subtree’ (MAST): The largest subset of the taxa set, under
which both trees are the same. (3) ‘Quartet Fit’: The
number of identical induced quartet trees (out of
the total number of induced quartet trees). Full detail on
the above measures appears in the supplement.

Reconstruction methods

The following reconstruction methods we compared in
this study. We used the Phylo SI method described
above with k=10 based on the simulation results and
biological rational. The GRAPPA toolbox for inversion/
breakpoints distance-based phylogenetic reconstruction
was taken from (24).

We also implemented two additional whole-genome–
based methods to compare with the former two:

. Directed Pairs (DP): As suggested in (33), we counted
in two given genomes the number of gene pairs that
exist in both genomes and the open reading frames
they encode are in the same orientation.

. GC: This approach sets the distance between two
genomes as the fraction of genes residing in only one
genome divided by the size of the union set of genes in
the genomes. We note that this approach is a special
case of the SI-based method with k � n=2.

Data sources

All genomes analyzed were downloaded from the NCBI
microbial genomes resources (50) (http://www.ncbi.nlm.
nih.gov/genomes/lproks.cgi). A set of 89 bacterial organ-
isms representing the major clades of the bacteria domain
with completely sequenced and annotated genomes was
randomly selected.

The Tree of Life (TOL) topology for these organisms
was extracted using the iTOL tool (51).

Appropriate 16S-rRNA genes were downloaded from
the Ribosomal Database Project (RDP) (52–54). RDP
provided two sources for trees, namely a distance-based
ready-made tree for selected organism and prealigned se-
quences, based on rRNA secondary structure alignment,
that are available from RDP for further independent com-
parative analysis (including phylogenetics). As the
maximum likelihood (ML) reconstruction is considered
more reliable than distance based, we chose to use the
aligned sequences and in the Supplementary Material we
provide also results from the NJ tree from RDP. We
applied a ML reconstruction under the GTR+Gamma
evolutionary model (designed for sequences with signifi-
cant between-site rate heterogeneity), using PhyML (55)
on the aligned sequences. A variant of the 16S-rRNA tree
is the AMPHORA tree that instead of relying on the16S
RNA gene alone, uses a multitude (31) of highly conserved
proteins, with manually curated alignments (2). We ex-
tracted the AMPHORA tree over (or induced by) our
taxa set from (56).

Finally, we constructed three whole-genome–based
trees using the methods outlined above: SI, GC and DP.
The names and order of genes were extracted using
RefSeq annotation (57), as it provides an easy to use
source of such data. We are aware that RefSeq is not

adequate for this task and for a more comprehensive
study, a better database, constructed using a more appro-
priate orthology detection tool should be used. We applied
a preprocessing stage to the gene lists extracted from
RefSeq in which spurious genes were removed. Full
details and statistics about this stage appear in the
Supplementary Text. Additionally, to account for
possible inaccuracies in RefSeq, we set the value of k to
10. The main weakness of RefSeq in the context of this
study is its partial coverage for some genomes. However,
by excluding these genomes from the analysis and
associating confidence to each node, this problem is
alleviated.

RESULTS AND DISCUSSION

Validation of a new phylogenetic method requires its com-
parison with widely accepted ways of tree reconstruction.
We implemented our method in software and tested it in
various simulations and real data environments.

Simulation study

Choosing the Optimal k
Our first attempt was to study the behavior of the SI
measure as a function of evolutionary distance. Our
basic assumption is that the probability of a HGT at a
gene grows as a function of time (34), and therefore, a
gene at two genomes will have a greater probability to
reside at different k-neighborhood, the longer the time
between divergence of the two genomes. Hence, we at-
tempted to quantify how this probability affects the sep-
arability of two genomes as a function of k. In other
words, we sought to determine the values of k under
which we will have the most distinction between
genomes separated by different times.
To answer this question, we conducted the following

experiment. We applied a constant ‘HGT rate’ to a
genome, that is, we perform a HGT event at a gene in a
genome with a constant probability P for every gene in the
genome, where P represents the HGT rate. Hence, the rate
of HGTs at a gene in that genome is P (this should not be
confounded with the rate describing edge lengths as
described below). We wanted to measure how the SI
changes as a function of k. We repeated this procedure
for several values of P representing genomes at different
evolutionary distances. The results are shown in Figure 4.
As can be seen from the figure, the SI is small for closely

related genomes and larger for more distant ones. Hence,
we can infer that the SI measure is a good indication for
evolutionary distance, and according to our model, it can
serve for phylogenetic reconstruction. Next we sought to
identify the optimal k providing the best separability for
all distances. We see that at higher values of k, SI is similar
for different values of P and approaching 1 when k
approaches n=2. It can also be noted that, as the curves
are not linear, greater separability is achieved at lower
k-values around k ¼ ½5� 10�. Thus, given a set of
genomes, the optimal k should be determined as value
that maximizes simultaneously the separability between
all pairs, and at the same time is not too small to
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account for artifacts caused by incorrect orthology detec-
tion or other factors. This can be found by simply
applying the method, without reconstructing a tree, for
several values of k.

Using the SI measure for whole-genome–based
phylogenetic reconstruction
Based on the previous insight, we can use the SI measure
to reconstruct trees. Hence, we define the synteny distance
as 1� SI and used this dissimilarity measure under a
distance-based method. Specifically, we used the NJ
algorithm (45) for this purpose as described under
‘Materials and Methods’ section. Our goal in this part is
to gauge the sensitivity of the tree reconstruction precision
to different values of k and to the relative mutability of the
gene.
Hence, we simulated trees with different average

mutation rate per edge (See ‘Materials and Methods’
section) and applied the SI method for tree
reconstruction. In Figure 5, we kept the average rate of
HGT (HGTs per a gene in the genome) constant. This is
the parameter for the exponentially distributed tree edge
lengths (see Supplementary Material for fuller details).
Thus, at each edge in the tree, the probability of a gene
to undergo HGT, i.e. to be acquired horizontally, is
distributed exponentially with the HGT rate as a
parameter (this can be denoted as the inverse of ‘edge
length’, but for simplicity we defer it for a later stage).
We applied the SI algorithm each time with a different k
on the resulting genomes at the leaves of the tree. The
curves show the percentage tree difference (RF, see
‘Materials and Methods’ section). We see that under all
HGT rates, a value of k=10 is sufficient for accurate
reconstruction. Another interesting, albeit expected,
result is that for very high or low rates of HGT, only
poor reconstruction is obtained (�0.4 or 0.6%,
respectively) regardless of the value of k. This is explained
by the fact that for a very low HGT rate (the curve
corresponding to HGT rate 0.01), there is no strong

enough signal to distinguish between the leaves
(genomes), in particular close ones. On the other hand,
when the rate is too high (curve corresponding to HGT
rate 0.5), genomes are saturated with HGT and the power
of the method decreases. However, as our results on real
data show, such high HGT rates are rare, so we are in the
‘safe zone’.

In the Supplementary Text we also show a similar result
from a different perspective, for better illustration.

Comparison to genome rearrangement software
The genome rearrangement problem is defined as finding
the shortest sequence of rearrangement operations for
converting one genome to another. Similarly to the SI,
this measure (the number of operations) can be viewed
as a distance between genomes and hence be used for
phylogenetics (27). Although the two measures, the SI
and the rearrangement distance, measure different
processes, some special cases of both problems exist and
we can confine a comparison of the two methods to these
cases.

The main disadvantage in the genome rearrangement
problem is the restriction that the two compared
genomes must have the same set of genes [but see (28)
for extensions of this approach]. Hence, under this
model, a HGT can be perceived as a translocation in
one genome. To compare Phylo SI to such a technique,
we chose the software GRAPPA (24), one of the most
popular implementations of genome rearrangement
algorithms. As GRAPPA is slow, the study was restricted
to unrealistic tree sizes of 10 species and tiny genomes
of up to 80 genes. Accuracy (RF distance) was measured
as a function of genome size. The results are shown in
Figure 6. Running times were also compared as shown
in Figure 7. From the figures we can see that Phylo SI is
at least as good (accurate) as GRAPPA, regardless of the
rate of HGT, and the advantage grows with the size of the
genome. Moreover, running times of GRAPPA became

Figure 5. Quality of reconstruction (RF symmetric difference to the
model tree) as a function of k for various HGT rates (HGT probability
at each gene in a genome). Simulated number of taxa (n) is 100,
genome size is 500.

Figure 4. SI between a pair of genomes (#genes per genome=500).
Measured SI as a function of k for various HGT rates (HGT probabil-
ity at each a gene in a genome).
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prohibitive for genome sizes >80 genes. We also see
(Figure 7) that running times of GRAPPA grow
exponentially with both the size of the genome and the
rate of HGT. This limitation makes GRAPPA useless
for large-scale analyses of hundreds of species.

Simulation results with related whole-genome–based
reconstruction techniques

Two other whole-genome–based approaches that were
suggested in the past are DP (33,58) and GC (29). In the
DP approach, the number of ordered uninterrupted gene
pairs that are present in both genomes is divided by the
total number of pairs shared by the two genomes. This
measure reflects the degree of gene order similarity
between the genomes, and as with the SI, we subtract it

from one to convert it to a metric. The other approach is
the traditional GC that simply counts the number of
shared genes, normalized by the size of the union gene
set in the two genomes. As these methods are affected
by both gene order (DP) and gene gain/loss (GC), our
simulation procedure combined the two processes,
namely gene gain/loss and HGT (see ‘Materials and
Methods’ section). We aimed at simulating as similar as
possible a process to the real bacterial genome data we
analyzed (minimal size of gene intersection set between
two genomes 0.18 of genome size, average size of gene
intersection set between organism 0.35 of genome size,
see section on real data analysis) so we set our parameters
accordingly. Figure 8 shows the results of this analysis. In
the supplement we provide fuller details on the parameters
used and show similar results for more values of pHGT.
We set the ratio of HGT to gene loss as a constant and
varied the event probability at an edge. It can be seen that
the DP approach is significantly inferior to SI and GC,
whereas for the relevant values of parameters, SI is
superior to GC. We note that for high rate of events at
an edge, the GC approach outperforms SI; however, at
such rates, the resulting genomes at the leaves are small
as a result of heavy gene loss events (only a few genes) and
the signal is weak.

Real data analysis

We also applied our method to real genomic data. Here we
separately analyzed two types of data: a large, diverse,
arbitrarily selected bacterial data set and a smaller data
set of Alphaproteobacteria for which there are published
results regarding its evolutionary history. As here we
cannot compare the result of Phylo SI to a model tree
from which the data were generated, for both data sets
we contrasted the SI tree with other published trees over
the same taxa set. We made several comparisons and
further analyses on each tree separately and also
between the trees. We note that the comparison of the
SI tree to the other methods, as opposed to the simulation
study, should not indicate the accuracy of the method, as
these methods measure different processes and hence
result in different trees. Moreover, a dislocation of a
specific taxon can point out to some irregularity in its
genome architecture, as we next show. Therefore, the
part of study provided here allows for a noncommon
comparison between several trees (i.e. evolutionary
hypotheses) for this set of organisms.
All trees in Newick format appear in the Supplementary

Material.

Large, diverged, uniformly selected bacterial set

The data set to which we applied our method is a set of 89
fully sequenced bacterial species chosen uniformly and
arbitrarily from the NCBI genomic database (59). For
each pair of genomes Gi,Gj we constructed the average
synteny - SI10ðGi,GjÞ (i.e. the 10-neighborhood of every
gene is taken) and generated the induced dissimilarity
matrix. Finally, we used the standard NJ algorithm (45)
implemented in Phylip (46) for constructing phylogenies

Figure 6. ‘Phylo SI’ versus GRAPPA reconstruction difference for
simulated phylogenetic trees. Genome sizes= [25, 100], HGT
rate= [0.1, 0.4], number of taxa in the phylogenetic tree=10, k in
‘Phylo SI’=10.

Figure 7. ‘Phylo SI’ versus GRAPPA running times. Genome
sizes= [25, 100], HGT rate= [0.1, 0.4], number of taxa in the
phylogenetic tree=10, k in ‘Phylo SI’=10.
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from dissimilarity metrics. The resulting tree is shown in
Figure 9 with major phyla color-coded.
Although the tree contains several branches that

correspond to known phyla [e.g. Firmiicutes (orange),
Actinobacteria (pink) and Cyanobacteria (green)] and
correctly places many sister taxa, it nevertheless has
several inconsistencies with known taxonomic relations
of bacteria. One large clade (marked in blue), divided
into two sub-clades contains only gammaproteobacteria,
but some gammaproteobacteria branch deeper with
Bordetella, which is a beta-proteobacterium. Failure to
separate these closely related classes is common in both
genome-based analyses (36) and rRNA-based analysis
(60). However, there are also more extreme cases such as
members of the Aquificae and Thermotogae phyla that
fall within the betaproteobacteria branch (cyan). As can
be also seen from the figure, there is an uncolored clade
(on the top) containing taxa from unrelated groups. A
closer examination of the genomes in that clade reveals
that few of them contain only a handful of annotated
genes under RefSeq, with 14 genes for the
Alicyclobacillus acidocaldarius as an extreme case.
Needless to say, any reliable inference is impossible in
such cases. Whereas we address this problem separately
at a later stage, we now compare this tree with other trees
over this taxa set notwithstanding the above exceptions.
We contrasted the resulting tree with three other
‘accepted’ trees over this set of species: the TOL extracted
from the iTOL (1), a 16S-rRNA–based tree constructed
using ML approach from aligned sequences extracted
from the RDP database (52), and finally, the tree
constructed with AMPHORA suit (56). The three
additional trees, the TOL-tree, the 16S-rRNA tree and
the AMPHORA tree, are shown in Supplementary
Figures S10–S12, respectively, in the Supplementary
Text. Each of these other trees have some limitations.
The TOL was constructed from an aggregate of genes
from which putative cases of HGT were removed (1).
The result is a partially resolved tree with only 41

internal branches (splits) out of the maximum possible
86. In contrast, the 16S-rRNA tree is fully resolved (a
binary tree with 86 internal edges); however, even a
highly conserved gene such as the 16S-rRNA was found
to exhibit confounding evolutionary histories for certain
bacterial organisms [e.g. Cyanobacteria (8,61,62)].
Moreover, due to its conservation, the 16S-rRNA might
not convey enough information to distinguish between
close species or even strains (as we show below). Finally,
although the AMPHORA tree was made with the purpose
of alleviating the 16S-rRNA tree drawbacks by
concatenating several protein coding genes, it is not
immune to errors such as HGT, sequence alignment
artifacts, and so on. Similarly to the TOL, AMPHORA
also relies on highly conserved genes and, moreover, on
their protein sequences, and hence may not convey enough
signal to distinguish between closely related species or
strains.

We applied the three tree similarity measures discussed
in the ‘Materials and Methods’ section between all pairs of
the above four trees. The results are depicted in Table 1.
We note though that one should take these comparisons
with caution, as they measure different evolutionary
mechanisms that may differ greatly within wide range of
species, and hence cannot indicate on some ‘correctness’.

The first measure is the percentage of common edges
between the trees (denoted by RF, as it is defined by one
minus the RF distance). As we see from the table, there is
a higher similarity between the 16S-rRNA and
AMPHORA trees. However, although the other RF
scores appear to be fairly low, we now show they are far
from being incidental. To estimate the significance of these
low RF scores, we need to compare it with a null model—
a random tree. In (63) asymptotic results for the
distribution of distances between random trees are
studied. We, however, deal with a specific tree, and of
relatively small size. Hence, to test the significance of
this result we pursued the same approach as (64). We
generated 100 000 pairs of (binary) random trees of the
same size and calculated the distribution of the RF over
these random trees (see histogram in Supplementary
Material). In 80% of the cases, the trees had not any
edge in common and 7% edges in common only
0.002%. Needless to say that a similarity of 12%
common edges between the random trees was never
encountered.

The RF distance is a strict measure in the sense that a
small perturbation in the tree, e.g. a relocation of a single
species in the tree, decreases the score substantially. It was
also argued (65) that RF distances favor methods that
produce unresolved trees, and hence can tend to make
methods that return consensus trees look more accurate
than methods that produce binary trees. This is in
particular relevant due to the fact that the TOL tree is
so loosely resolved.

A more tolerant measure is the ‘quartet fit’ (66) in which

the topologies of all
� n
4

�
possible quartets are compared

between the trees. A quartet agrees with a tree if the tree
induces the same topology over the same four taxa as in

the quartet (see definition above). As
� 89
4

�
is too large a

Figure 8. Phylo SI versus. DP versus GC reconstruction quality
Benchmark.
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number to be analyzed, we generated a random sample of

1 000 000 quartets from one tree and compared it with the

other. The results appear at the second row of Table 1. As
can be seen, the SI tree resembles each of the other trees

more than they resemble each other. To assess the
significance of these results, we calculate the probability

of such scores to be obtained by chance. For this purpose
we first define a ‘random tree’:

DEFINITION 2
A binary unrooted random tree Tr over n species is
obtained recursively from a random tree over n – 1
species by choosing uniformly at random, any of the
2n� 3 edges, splitting it by a new internal node and
attaching (by an external edge) the nth taxon to that node.

The process is started from an unrooted tree over three
taxa, which is a star tree with one internal node and three
external edges. It can be easily shown that any binary tree
on n nodes is obtainable by this process, and all trees are
equiprobable. Moreover, a quartet tree (e.g. a,bjc,d) is
consistent with a random tree with probability 1/3 (as
there are three topologies and they appear in the same
frequency in all trees). Now, let Q(T) be the full set of
n
4

� �
quartets induced by a binary, unrooted tree over n

taxa. Then, the above implies that the expected number of
quartets from Q(T) satisfied by a random tree is

jQðTÞj=3 ¼
n
4

� �
=3. Hence, the quartet fit significance

score is defined as follows:

DEFINITION 3
(quartet fit significance) The significance of quartet fit
score s is the probability to obtain a (quartet fit) score at
least s on a random tree Tr (for a given quartet set Q).

We note that the topology of T is not important, as Tr is
random and hence, the quartet fit significance is the same
for any tree T. To answer this question, we use bounds on
large deviations for the binomial distribution (67) as

follows. Let m ¼ jQðTÞj ¼
n
4

� �
and Sm is the number of

quartets satisfied by Tr. Now, by the definition of Tr, every
quartet is considered as a Bernoulli trial with success
probability P ¼ 1=3. The probability of obtaining a

success ratio of at least a in a series of m trials is
bounded by

PrðSm > amÞ < e�mH ð2Þ

where H ¼ a logðaPÞ+logð1�a1�PÞ is the relative entropy
between a p-coin and an a-coin (also known as the
Kullback–Liebler distance). As this bound diminishes
exponentially in the number of trials m, it is easy to see
that a success ratio of 60% versus random 1/3 in 1 000 000
trials is undoubtedly significant.

Finally we applied the MAST tree metric as described in
the ‘Materials and Methods’ section. We conducted the
same simulation as in the RF to assess the significance of
these results. The complete histogram appears in the
Supplementary Material. It can be evidenced that
the MAST results show fairly high similarity between the
trees, significantly above random similarity, where the
value of 0.4 was hardly achieved by random.

To further validate these results we also compared three
more trees: The original 16S-rRNA tree from RDP, built
by NJ, and the DP and GC trees from the RefSeq data
used by the Phylo SI method. The three complete seven by
seven matrices, corresponding to each of the three tree
metrics, appear in the Supplementary Material. These
additional data suggest that there is a relative higher
similarity among the trees based on sequence (DNA,
proteins) data (the RDP and AMPHORA trees) and
also among whole-genome–based trees (SI, DP and GC
trees) and lesser between members of different groups
(although the SI tree also exhibits a high similarity to
these ‘sequence-based’ trees). The TOL tree in general
exhibits lower similarity to all other trees.

As indicated above, the taxa set used in this part
contained several species with poor RefSeq annotation.
This not only produced more or less random results but
also cannot be reflected in the bootstrap approach
developed for the method, rendering these values futile.
To cope with the latter problem, we pursued the following
approach. We filtered out all genomes with <500 genes
and applied Phylo SI only to the remaining genomes.
We also developed a recursive ‘confidence value’ for a
node in the tree, based on weighted average, aimed at
replacing the bootstrap value for this setting. This
confidence value reflects the ‘coverage’ of the annotation
at the genomes, in terms of the fraction of annotated genes
from the total number. The tree along with the confidence
values appears in the Supplementary Text in Supple-
mentary Figure S13, as well as details about this new
criterion.

The SI tree is generally in good agreement with expected
phylogenetic relationships, with the phyla Actinobacteria,
Cyanobacteria both forming monophyletic clades, and the
classes Gammaproteobacteria and Alphaproteobacteria
being monophyletic, with the exception of Francisella
tularensis and Orientia tsutsugamushi, respectively. These
two exceptional taxa have genomes riddled with repetitive
elements: O. tsutsugamushi has �4200 identical repeats of
>200 bp in size, which account for >37% of its genome
(68), whereas F. tularensis has 50 copies of the transposon
ISFtu1 and a duplicated region of 33.9 kb (69).

Table 1. Pairwise similarities between the four trees

Tree Similarities

16S AMPHORA ToL SI

16S 100/100/100 53/91/67 12/51/42 15/69/49
AMPHORA 53/91/67 100/100/100 13/51/41 14/66/52
ToL 12/51/42 13/51/41 100/100/100 14/61/62
SI 15/69/49 14/66/52 14/61/62 100/100/100

Each entry contains the percentage similarity according to common
edges (RF), quartet fit and MAST, respectively.
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The presence of a large number of repetitive elements can
generate homologous recombination events and rando-
mize gene order within the genome, especially in
intracellular pathogens, such as F. tularensis and
O. tsutsugamushi that tend to have relaxed selection
pressures on genomic changes and mutations alike. This
randomization of gene order probably obscures the
synteny-based phylogenetic signal in these species. On
the one hand, this is a limitation of the Phylo SI method
but on the other hand this makes the method particularly
useful for identifying such unusual genomes. Importantly,
phylogeny within the gammaproteobacteria is well
resolved.

Summarizing the results for this part, it is evident that
there is some incongruence between the trees constructed
by these three different approaches that do not necessarily
reflect superiority of one approach over another, rather
due to differences among the methods that are sensitive
to various types of ‘noise’. Further, the similarity between
trees built by the same approach (either nucleotide based,
or gene based), but not between those from different
approaches, emphasizes the existence of different
processes in the evolution of genome architecture
(70,71). This may suggest a more inclusive attitude
toward phylogenetics in prokaryotes than reliance on
sheer sequence similarity between homologous genes.

Alphaproteobacteria

Our second benchmark for the SI-based method was to
test it on a less-diverged bacterial class that have been well
studied in physiologic and taxonomic contexts. This
analysis facilitates comparisons between methods in a
biological context, including those where the best known
phylogenetic marker, the 16S-rRNA, does not provide
sufficient taxonomic resolution.

We therefore chose a set of 45 Alphaproteobacterial
species. As before, we also constructed the TOL tree by
means of iTOL (51) and the 16S-rRNA gene-based tree
(see ‘Materials and Methods’ section) using RDP.

The three trees—the SI-tree, the 16S-rRNA tree and
the TOL tree, are depicted in Supplementary Figures
S14–S16, respectively, in the Supplementary Text. Both
the 16S-rRNA–based and the TOL trees contain
unresolved branches, especially more recently diverged
clades within the trees (e.g. the genus Brucella). These
may be the result of confounding evolutionary histories
for different genes (TOL) due to HGT or to the lack of
evolutionary signal due to insufficient number of
substitutions (16S-rRNA and TOL).

As we are interested in the biological relevance of the
resulting trees, we set to perform bootstrap analysis to
establish branch support in the trees. The TOL comes
without bootstrap values and the sequences are
unavailable and therefore was excluded from this further
analysis. Hence, we restricted the bootstrap analysis only
to the 16S-rRNA and SI trees. The 16S-rRNA bootstrap
was constructed with the correction for multiple
substitutions and excluding positions with gaps, whereas
the SI bootstrap was constructed as described above
(see ‘Materials and Methods’ section). For both trees,

branches with <80% bootstrap support values were
collapsed, as shown in Supplementary Figure S17 at the
Supplementary Text. In terms of branch support, the SI
tree was superior to the 16S-rRNA tree by preserving 32
versus 26 branches (20% more). Although it is a common
practice to manually remove ambiguous positions from
multiple sequence alignments, resulting in much
improved bootstrap values, this requires significant
know-how and skill. Thus, having a fully automated
method, such as Phylo SI, capable of generating highly
resolved phylogenies without user intervention, can be a
significant improvement, especially in a clinical setting.
Generally, the deep relationships, such as those between

families and orders were well recovered in all trees (e.g.
Rickettsiales, Rhizobiaceae or Brucellaceae), and thus all
methods were fairly accurate. Nevertheless, some
mismatches were found. For example, Agrobacterium
radiobacter K84 was sister taxon to several Rhizobium
species in the SI and 16S-rRNA–based trees, but not in
the TOL, where it clustered with other Agrobacterium
species. This inconsistency may be explained by a recent
study (72), which suggests that A. radiobacter K84 should
actually be reclassified as Rhizobium rhizogenes K84 and
does not actually belong to the genus Agrobacterium.
On the other hand, the clade containing the genus

Brucella is well-resolved by the SI tree but not in the
16S-rRNA based or TOL trees. This classification was
compared with an established tree, based on sequences
of multiple manually selected genes (73) and the two
have the same topology for the Brucella species
examined. Moreover, the TOL tree did not reconstruct
an informative subtree for the Bartonellaceae family,
whereas both the 16S-rRNA–based and SI trees
successfully resolved it, obtaining concordant topologies.
In addition, the Pathosystems Resource Integration

Center (PATRIC) (74) provides analysis tools and a rich
database for all bacterial species in the selected the
National Institute of Allergy and Infectious Diseases
categories A–C priority pathogens list. This database has
an implemented phylogenetic pipeline that reconstructs
organismal phylogenies based on a concatenation of
reliable residues from many proteins shared by the taxa
in question, not only the highly conserved ones that are
included in ITOL. PATRIC was used to construct a
phylogenetic tree containing 24 out of 45 Alphapro-
teobacteria examined above. A comparison between the
SI and the PATRIC trees reveals two disagreements,
namely the positions of A. radiobacter K84 and
Sinorhizobium meliloti 1021, where PATRIC supports
the iTOL topology (see above) over the SI’s topology.
However, the Brucella clade in both trees had the same
topology, apparently demonstrating the correct solution
obtained by the SI method, in a case where iTOL and
16S-rRNA–based trees fail.
In summary, our findings indicate that Phylo SI is

particularly useful in resolving the accurate phylogenetic
location of species within genera. This circumvents the
weak signal provided by many slow-evolving genes
commonly used in phylogenetic analyses. The method
can also suggest alternative explanations to traditional
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beliefs of species evolution that are based on information
orthogonal to sequence based similarities.

CONCLUDING REMARKS

In this work we have described a new approach for
phylogenetic reconstruction, Phylo SI, that appears to be
useful, in particular, for groups of organisms
characterized by high gene mobility. The method is
based on the conservation of gene order among species
but, as opposed to other existing gene order–based
methods, takes into account also events of gene gain/
loss. Phylo SI defines the SI that captures the relative
synteny conservation between two organisms and
averages this value across the whole genome. The Phylo
SI method provides a quick and efficient way to
reconstruct the phylogeny of a large number of organisms
for which genome sequencing data are available. With
rapidly decreasing sequencing costs, bacterial genome
sequencing in emerging pathogenic isolates is becoming
routine, further emphasizing the need for quick and
accurate taxonomic placement of the bacteria in
question. The SI method only requires the locations of
genes in the genome and can provide independent
validation of the commonly used sequence-alignment–
based phylogenies, such as those based on rRNA gene
alignments or concatenation of multiple genes (2), or the
iTOL (51).
The Phylo SI method is parameter and model free, and

does not require any previous knowledge, manual
selection of genes, multiple sequence alignments and
their refinement or lengthy computation. Moreover, it is
well grounded in evolutionary principles. Far from being
random, the order of genes in the genome, known as the
genome architecture, is substantially conserved in
microbial evolution, probably reflecting selective pressures
(75).
We show by simulation the advantages in resolution

over less sensitive approaches such as gene presence/
absence (29) or DP (33) and in performance over
genome rearrangement software. Our real data results
suggest the existence of a distinct process of genome
architecture evolution that does not necessarily conform
with the evolution of single genes, even the more
conserved ones. We also demonstrated the power of this
method in resolving the taxonomic placement of species
within genera, which is highly useful for bacterial
taxonomy, and can be applied rapidly and without prior
knowledge, which may be important in a clinical setting.
Furthermore, because this method can provide additional
independent support for clades where existing methods
disagree (see above), it represents a useful addition to
the current phylogenetic toolkit available to
microbiologists.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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