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ABSTRACT

Exome sequencing (exome-seq) has aided in the
discovery of a huge amount of mutations in
cancers, yet challenges remain in converting
oncogenomics data into information that is inter-
pretable and accessible for clinical care. We con-
structed DriverDB (http://ngs.ym.edu.tw/driverdb/),
a database which incorporates 6079 cases of
exome-seq data, annotation databases (such as
dbSNP, 1000 Genome and Cosmic) and published
bioinformatics algorithms dedicated to driver
gene/mutation identification. We provide two
points of view, ‘Cancer’ and ‘Gene’, to help re-
searchers to visualize the relationships between
cancers and driver genes/mutations. The ‘Cancer’
section summarizes the calculated results of driver
genes by eight computational methods for a specific
cancer type/dataset and provides three levels of
biological interpretation for realization of the rela-
tionships between driver genes. The ‘Gene’ section
is designed to visualize the mutation information of
a driver gene in five different aspects. Moreover, a
‘Meta-Analysis’ function is provided so researchers
may identify driver genes in customer-defined
samples. The novel driver genes/mutations
identified hold potential for both basic research
and biotech applications.

INTRODUCTION

Next-generation sequencing (NGS) has greatly increased
the identification of mutations in cancer genomes and
allows researchers to profile the molecular characteristics
of various cancer types. In the past few years, applying
exome sequencing (exome-seq) in oncogenomics studies
has become the norm (1). Also, enormous amounts of
cancer genomics data have been generated from large-
scale cancer projects (2) such as The Cancer Genome
Atlas (TCGA), the International Cancer Genome
Consortium (ICGC), the Therapeutically Applicable
Research to Generate Effective Treatments (TARGET)
and the Pediatric Cancer Genome Project (PCGP).
Although NGS has already helped researchers discover
huge amounts of aberrant events in cancer genomics,
translating these data into information that can be easily
interpreted and accessed is still challenging.

Cancers are primarily caused by the accumulation of
genetic alterations and could be characterized by
numerous somatic mutations. However, not all of these
mutations are involved in tumorigenesis. Only a subset
of mutations contributes to cancer development, whereas
others make no or little important contribution. To crys-
tallize this concept, the terms ‘driver and ‘passenger’
mutation have been coined (3). The mutations that
confer a selective growth advantage to the tumor cell are
called ‘driver’ mutations (1). ‘Passenger’ mutations are
defined as those which do not confer growth advantage
but that do occur in a cell that coincidentally or subse-
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quently acquires a driver mutation (4). In most solid
tumors, an average of 33–66 genes with somatic mutations
were found to alter their protein products, but the count
of non-synonymous mutations varies across cancer types
(1). More than 80% of mutations are missense (1), and
these mutations vary highly in their functional impact
depending on their position and function in the protein
and the nature of the replacement amino acid. It remains a
significant challenge to identify cancer driver mutations
because many observed missense changes are neutral pas-
senger mutations (5). Several computational algorithms
have been developed to predict the functional impact of
missense mutations based on concepts including evolu-
tionary conservation, structural constraints and the
physicochemical attributes of amino acids. In the last
few years, machine learning methods have been developed
to specifically predict cancer-driving deleterious mutations
(6–8).

A driver gene is defined as a gene whose dysfunction
will cause tumorigenesis. Vogelstein et al. have demon-
strated the fundamental difference between a driver gene
and a driver mutation (1). Numerous computational
methods to identify driver genes have been published;
algorithms such as MutsigCV (9), MuSiC (10), Simon
(11), OncodriverFM (12) and ActiveDriver (13) are
based on the mutation frequency of an individual gene
compared with the background mutation rate. However,
background mutation rates among different genome
regions and patients are highly variable (9). Recent
studies have shown that the mutation rate varies in
normal cells by more than 100-fold within the genome
(14) and that such variation is higher in tumor cells (15).
To correct for this bias, MutSigCV uses patient-specific
mutation frequency and spectrum, as well as gene-
specific background mutation rates. OncodriverFM
incorporates the functional impacts of mutations as add-
itional information. ActiveDriver identifies driver genes
with statistically significant mutation rates in phosphoryl-
ation-specific regions. Other methods are based on the
sub-network approach (16–24) that can identify groups
of genes containing driver mutations directly from
cancer mutation data either with or without prior know-
ledge of pathways or other information of protein/genetics
interactions. This approach is successful particularly when
the observed frequencies of passenger and driver muta-
tions are indistinguishable, a situation wherein single
gene tests fail. Moreover, sub-networks are believed to
identify cancer driver genes with low recurrence (25).
Most of sub-network based methods, such as MEMo
(19), MDPFinder (16), Dendrix (17), Multi-Dendrix (18)
and RME (24), identify driver genes with the characteris-
tics of mutual exclusivity. Moreover, sub-network
methods could additionally incorporate copy number
variation (CNV) data for driver gene identification
(16–19,22,24).

In this study, we present the DriverDB database, which
incorporates a large amount (>6000 cases) of exome-seq
data, annotation databases (such as dbSNP (26), 1000
Genome (27) and COSMIC (28)), and the various bio-
informatics algorithms devoted to defining driver genes
or mutations. DriverDB focuses on predicting driver

genes by various algorithms and provides different
aspects of the mutation profiles of an individual gene.
We provide two view points, ‘Cancer’ and ‘Gene’, for
benefiting researchers to visualize the relationships
between cancers and driver genes/mutations. A ‘Meta-
Analysis’ function is further included in the DriverDB
for allowing researchers to identify driver genes of
custom-defined samples according to clinical criteria.

MATERIALS AND METHODS

Dataset collection

As shown in Figure 1, DriverDB includes mutation
profiles from 6079 tumor–normal pairs, including 4397
from TCGA, 861 from ICGC, 112 from PCGP, 238
from TARGET and 471 from published papers (denoted
as ‘others’ in Figure 1). Detailed information for the
datasets is provided in Supplementary Table S1. The
mutation data and CNV data of these pairs were retrieved
from the data portal of the projects or from the supple-
mentary data of the published papers, and were then
parsed using in-house Perl scripts. To ensure annotation
consistency and to make the retrieval process more effi-
cient, clinical information for each sample was manually
curated, based on clinical data obtained as mentioned
above. Each sample was re-annotated with 38 clinical
characteristics. The summary of the clinical information
is provided in Supplementary Table S2.

Mutation annotation

All mutations were mapped to known databases, and their
functional impacts were predicted by numerous bioinfor-
matics tools shown in the Annotation module in Figure 1.
For annotating known variants, DriverDB incorporates
the information collected from different databases
including dbSNP, NHLBI GO ESP (29), 1000 genomes,
COSMIC, ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/),
NHGRI GWAS catalog (30), HGMD-PUBLIC (31) and
OMIM (http://omim.org/). We used SnpEff (32) and VEP
(33) to predict the effect of each mutation, such as non-
synonymous coding, stop gained/lost and frame-shift.
In addition, DriverDB scores the deleterious effects and
functional impact by seven algorithms, including SIFT
(34), PolyPhen2 (35), Condel (36), LRT (37), FATHMM
(38), MutationAssessor (39) and MutationTaster (40).
Furthermore, we scored each mutation by the number of
algorithms that judge the mutation as deleterious (these
numbers are denoted as ‘Driver Score’). For example,
the mutation g.178952085A>G of PIK3CA, which occurs
in >100 patients from various cancer types, was identified
as deleterious by seven algorithms; therefore, its Driver
Score is 7.

Driver gene identification

DriverDB utilized eight computational methods to
identify driver genes of cancer types (the Cancer Driver
Gene module in Figure 1). Four methods, including
MutsigCV, Simon, OncodriverFM and ActiveDriver, are
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based on mutation frequencies and utilize all mutations to
identify driver genes.
For the sub-network based methods, MEMo, Dendrix,

MDPFinder and NetBox were used. We applied the
following filters to remove mutations/genes from the
analysis:

. Mutations whose effect impact was identified by
SnpEff as ‘Low’ or ‘Modifier.’

. Mutations denoted as common and not recorded in
disease/clinical-related databases according to
Mutation annotation.

. Potentially spurious genes reported by several studies
(9,18).

Detailed criteria for each method are described in
Supplementary Methods.

Functional analysis

For each set of driver genes identified by individual/
multiple method(s) in a group of cancer samples, we
provided three levels of biological interpretation (Gene
Oncology, Pathways and Protein/Genetic Interaction) to
help researchers to realize the relationships between driver
genes. In the ‘Gene Oncology’ part, we used the topGO

and GeneAnswers packages of Bioconductor to calculate
the topology of the GO graph, as well as to visualize the
many-to-many relationships between GO terms and genes.
In the ‘Pathway’ analysis, we used collections from
KEGG (41), PID (42), Biocarta (http://www.biocarta.
com/), REACTOME (43) and MSigDB (44) to annotate
driver genes. Detailed information for these eight collec-
tions is provided in Supplementary Table S3. The three
databases, IntAct (45), BioGRID (46) and iRefIndex (47),
were used to interpret the Protein/Genetic Interaction. We
also performed classic Fisher’s exact test and utilized
–log(P value) to score each GO term and Pathway
category in the Gene Oncology and Pathway analyses.
For the ‘Pathway’ and ‘Protein/Genetic Interaction’
sections in the DriverDB web interface, the Cytoscape
Web (48) tool was embedded for interactive network
visualization.

WEB INTERFACE

Cancer

The ‘Cancer’ section stored the calculated results of driver
genes for a specific cancer type/dataset. First, users can
define the data type(s) incorporated for driver gene

Figure 1. Schematic representation of data processing.
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identification (the red rectangle in Supplementary Figure
S1A) and then select a specific dataset, for example,
‘Glioblastoma multiforme’ (GBM). The result section
will then indicate the detailed information of the specific
dataset (red circle in Supplementary Figure S1B). Users
can select a driver gene set identified by ‘N’ methods
(the ‘Summary’ in Supplementary Figure S1B; ‘N’ is
determined by a drop-down menu) or by individual
methods according to the name of the method
(Supplementary Figure S1B). For ‘Summary’, a heat
map shows the relationship between genes and methods
(Supplementary Figure S1C; the blue color indicates genes
identified as driver genes by a method). For each driver
gene set, there is a heat map showing a mutation profile of
that driver gene set of samples (Supplementary Figure
S1D). We also performed functional analysis in three
levels of biological interpretation: ‘Gene Ontology’,
‘Pathway’ and ‘Protein/Genetics Interaction’. In the
‘Gene Ontology’ analysis, I and II indicate the topology
of GO graph by topGO and GeneAnswers, respectively,
(Supplementary Figure S1E) whereas III and IV show the
most significant GO terms and genes. The table in
Supplementary Figure S1E lists the information of all
the significant GO terms. In the ‘Pathway’ analysis,
there are eight collections of gene sets from public data-
bases including KEGG, REACTOME, MSigDB, PID
and Biocarta. For each collection, there is a network visu-
alization and a table displaying pathway categories of the
driver genes that are involved (Supplementary Figure
S1F). Finally, in the ‘Protein/Genetics Interaction’ part,
the interactions between driver genes are illustrated ac-
cording to three resources: BioGRID, IntAct and
iRefIndex (Supplementary Figure S1G).

Gene

In this section, researchers can visualize the mutation data
for a specific protein encoded by a gene in five different
kinds of aspects: Mutation Profile, Mutation Percentage,
Exon, Driver Score and Mutation Information
(Supplementary Figure S2A). Here, we use the gene
PIK3CA, which is identified as a driver gene in the
‘Cancer’ section, as an example. Bar chart colors in the
sub-figures of Supplementary Figure S2 indicate the func-
tional impact of a mutation, such as non-synonymous and
frame-shift shown in Supplementary Figure S2B. For
‘Mutation Profile’ (Supplementary Figure S2C), a heat
map shows the mutation rate calculated by the mutation
count/sample count of a cancer, at different protein pos-
itions across several cancer types. We also provide exon
and domain information with protein coordinates at the
bottom of the heat map (Supplementary Figure S2C).
Two bar charts located at the top and the left of the
heat map indicate the sum of mutation rate according to
protein position and cancer type, respectively. The
‘Mutation Percentage’ (Supplementary Figure S2D) is
similar to Supplementary Figure S2C, but the number in
the heat map is calculated by the following: (mutation
count of a protein region/total mutation count of a can-
cer)� 100. The heights of the two bar charts at the left and
the top of the heat map are normalized to the mutation

count of a cancer type or a protein region, respectively.
In the ‘Exon’ panel, the mutation counts and the mutation
types of each exon are illustrated in Supplementary Figure
S2E and S2F, respectively. For the ‘Driver Score’ part,
Supplementary Figure S2G and S2H indicate the Driver
Score (please see the ‘Materials and Methods’ section for
details) distributions of exons and protein positions, re-
spectively. All the mutation data of a specific protein are
listed under ‘Mutation Information’ (Supplementary
Figure S2A).

Meta-analysis

In addition to the stored calculated results,
DriverDB allows researchers to identify driver genes of a
user-defined, specific set of samples. As shown in
Supplementary Figure S3, users can select one or
multiple datasets in DriverDB. We provide a list of
clinical criteria, such as ICD-O-3 histology, tumor stage,
distant metastasis and lymph node status, to help
researchers to select a sub-group of well-defined cancer
samples according to one or multiple clinical parameters
for driver gene identification. Users can overview the
detailed clinical information of selected samples before
submitting this job to the server for real-time calculation.
The user will receive a notification email with a Result ID,
and then visualized driver gene results in the ‘Result and
Download’ section when the job is completed.

DISCUSSION

DriverDB makes the best of the massive amount of
exome-seq data published in recent years by integrating
driver gene analysis from numerous methods, as well as by
providing visualizations of mutation information accord-
ing to different aspects. As described in the ‘Introduction’
section, different bioinformatics algorithms have been
developed to identify driver genes based on several
assumptions and characteristics, each of which provides
different points of view regarding driver genes.
DriverDB integrates the analysis results of individual/
multiple method(s) and provides three levels of biological
interpretation: Gene Oncology, Pathway and Protein/
Genetics Interaction. These visualization results will help
users to quickly realize the relationships between driver
genes. A representative example of driver genes identified
in GBM is shown in Supplementary Figure S1. A total of
14 driver genes were identified (each gene by at least 4
methods), and nearly all samples had at least 1 deleterious
mutation among these 14 genes. Ten genes (CDKN2A,
EGFR, PTEN, TP53, CDK4, PIK3R1, NF1, PIK3CA,
RB1 and IDH1) are known to be critical in GBM tumori-
genesis (49,50). For the other four genes (ATRX, CHEK2,
CPSF6 and COL6A3), our functional analysis shows that
they are involved in cell cycle-related categories
(Supplementary Figure S1F). Moreover, ATRX has
been reported as the driver gene in pediatric glioblastomas
(51) and neuroblastomas (52,53). CHEK2 is relevant to
familial breast/ovarian cancer (54) and neuroblastomas
(54). CPSF6 can either enhance the invasive capacities of
or inhibit the proliferation of cancer cells (55). The spliced
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variants and the aberrant methylation of COL6A3, are
also related to cancers (56–58). Genes reported in other
references but not included in our 14-gene list can be
identified by less stringent criteria (such as those identified
by at least three methods; for example PDGFRA,
MDM2, MDM4 and CDKN2B).
The ‘Gene’ section is designed to help researchers to

visualize the mutation data of a driver gene. The represen-
tative example is PIK3CA, a well-known driver gene in
GBM as well as in other cancers (Supplementary Figure
S2). It is easy to find that there are two hotspot mutation
regions (at the middle and the end of the protein), espe-
cially in the ‘Mutation Percentage’ figure (Supplementary
Figure S2D). The two well-known driver genes, BRAF
and KRAS, also have the same characteristics
(Supplementary Figure S4). However, a driver gene may
have distinct hotspot mutation regions in different
cancers. For example, unlike lung cancers that carry
EGFR mutations at the kinase domain (KD), activation
of EGFR in GBM occurs through mutation at the extra-
cellular domain (59). This has been noted as the reason
that GBM with mutations in the extracellular domain
respond poorly to EGFR inhibitors (e.g., erlotinib) that
target the active kinase conformation (59). This phenom-
ena was recaptured by our calculation and was present in
the ‘Mutation Profile’ of EGFR in DriverDB
(Supplementary Figure S5).
In the ‘Gene’ section, bar chart colors indicate the func-

tional impact of a mutation, which can help to convey
important information. For example, FLT3 has been
reported to be mutated in approximately one-third of
patients in acute myeloid leukemia and has two hotspot
regions: one consists of internal tandem duplication (ITD)
mutations of 3–400 bp (always in-frame), and the other
consists of point mutations at aspartic acid 835 of the
KD (60). Such mutation information for FLT3 can be
easily obtained in DriverDB (Supplementary Figure S6).
Several studies have assessed the performance of

existing tools for predicting deleterious mutations, and
the results have demonstrated that identifying cancer-
driving mutations remains a significant challenge (5,61).
Hence, we used the ‘Driver Score’, which integrates the
information from seven computational tools, to describe
the deleterious level of a mutation and to highlight the
hotspot mutation region. For example, the Driver Score
distribution of the cancer-related gene ‘MLL2’ implies
that the third region of the MLL2 protein plays a more
important role than other positions (Supplementary
Figure S7). In summary, in the ‘Gene’ section of
DriverDB, researchers can easily be informed when muta-
tions are concentrated in one/some specific protein pos-
ition(s)/domain(s)/exon(s)/cancer(s).
The ‘Meta-analysis’ section allows a user to re-define a

group of samples from one/multiple datasets and then
identify driver genes for selected samples. It has been
noted that mutations are accumulated during tumor
progression. Different driver mutations may be used to
convert a normal cell to a tumor cell, or to turn a
benign tumor into a malignant one. The timing of muta-
tions is relevant to metastasis, and there are mutations
that occur during this process (1). Thus, if we could

define samples by a clarified biological or clinical goal,
we would have the opportunity to identify a specific set
of driver genes for a distinct question. To achieve this,
DriverDB offers a list of clinical characteristics to define
samples and provides a high degree of freedom for
researchers to utilize the huge amount of sequencing
data. For example, in Supplementary Figure S3 we
selected only 180 samples from TCGA breast cancer
project. Their lymphonode pathologic spread and ICD
oncology of histology are ‘N0’ and ‘infiltrating duct car-
cinoma, NOS’, respectively.

A number of databases and frameworks have been
developed to integrate large-scale genomic data (2),
including cBioportal (62,63) and IntOGen (64).
cBioportal contains datasets from TCGA and provides
gene-based search capabilities to interactively explore
multidimensional cancer genomics data. IntOGen is a
framework that integrates multidimensional data for the
identification of genes and biological modules involved in
cancer development. DriverDB incorporates a large-scale
data mining work using these algorithms in one go,
presents summarized driver genes, and provides different
kinds of aspects for mutation visualization. Another
unique part of DriverDB is that it also helps researchers
to identify driver genes in a customer-defined manner.

NGS has become the norm for large-scale cancer
research, and cancer exome-seq results will accumulate
rapidly in the next few years. For example, TCGA will
examine over 11,000 samples for 20 cancer types by
the end of 2014. Due to the Publication Guidelines of
TCGA (http://cancergenome.nih.gov/abouttcga/policies/
publicationguidelines), parts of data from TCGA are
excluded in DriverDB. As time goes by, data from
TCGA, as well as from other cancer projects/literatures,
will have no publication limitations and will be
incorporated into updated DriverDB. We envision that
these novel driver genes or mutations identified and
stored in DriverDB will hold great potential for both
basic research and biotech product development.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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