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ABSTRACT

The updated release of ‘NGSmethDB’ (http://
bioinfo2.ugr.es/NGSmethDB) is a repository for
single-base whole-genome methylome maps for
the best-assembled eukaryotic genomes. Short-
read data sets from NGS bisulfite-sequencing
projects of cell lines, fresh and pathological
tissues are first pre-processed and aligned to the
corresponding reference genome, and then the
cytosine methylation levels are profiled. One major
improvement is the application of a unique bioinfor-
matics protocol to all data sets, thereby assuring
the comparability of all values with each other. We
implemented stringent quality controls to minimize
important error sources, such as sequencing errors,
bisulfite failures, clonal reads or single nucleotide
variants (SNVs). This leads to reliable and high-
quality methylomes, all obtained under uniform
settings. Another significant improvement is the de-
tection in parallel of SNVs, which might be crucial
for many downstream analyses (e.g. SNVs and dif-
ferential-methylation relationships). A next-gener-
ation methylation browser allows fast and smooth
scrolling and zooming, thus speeding data
download/upload, at the same time requiring fewer
server resources. Several data mining tools allow
the comparison/retrieval of methylation levels in dif-
ferent tissues or genome regions. NGSmethDB
methylomes are also available as native tracks
through a UCSC hub, which allows comparison
with a wide range of third-party annotations, in par-
ticular phenotype or disease annotations.

INTRODUCTION

DNA methylation is an epigenome mark involved in key
biological processes (1–3), such as embryonic develop-
ment, transcription, genomic imprinting, learning,
memory or age-related cognitive decline (4–7). DNA
methylation plays an important role in the origin and
function of CpG islands (CGIs). Aberrant methylation
(mostly hypermethylation) of CGIs has been implicated
in the appearance of several disorders, such as cancer,
immunodeficiency or centromere instability (8–14).
Many different techniques are available for DNA

methylation profiling (15,16). Region-wide methods
detect the methylation states of known CGIs or
unmethylated fragments using either enzyme digestion
or inmunoprecipitation, but frequently only ‘mean
values’ of the corresponding regions can be derived from
these methods. The advent of next-generation sequencing
(NGS), together with bisulfite conversion of DNA, allows
the generation of whole genome methylation maps at
single-cytosine resolution (17–19). This provides an op-
portunity for studying important biological phenomena,
such as the absence of methylation in a particular genome
region over a range of tissues, the differential tissue methy-
lation or the changes occurring along pathological
conditions.
Several methylation databases centered in gene loci

(20–23), tissues (24,25) or diseases (26–28) have been
compiled. However, a wide variety of methodologies to
pre-process the data, aligning the reads or inferring the
methylation states has been used in compiling these data-
bases, thus leading to methylomes obtained with very dif-
ferent methods or parameter sets to be included into the
same database, which can bias downstream analyses.
Additional problems are the regional resolution or the
partial coverage of only some specific genome regions,
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which makes it difficult to use these data for comparative
analyses. However, the single-base whole-genome methy-
lomes stored in the new version of the ‘NGSmethDB’
database are all obtained using the same set of
programs/scripts, and derived under the same settings
and quality controls, thus allowing consistent comparative
analyses of whole-genome methylomes.

NGSmethDB CONTENT

Publicly available short-read data sets from NGS bisulfite-
sequencing projects for different cell lines, fresh tissues
and pathological tissues were downloaded mainly from
NCBI GEO (29). An updated list of the data sets used
for each genome, with detailed information on the
source cell-line or tissue, is maintained online (http://
bioinfo2.ugr.es/NGSmethDB/database.php).
To date, the database includes 87 methylome maps

generated for CpG and CpHpG (H = A,C,T) sequence
contexts in five different species for the most recent
genome assembly: Homo sapiens (hg19), Pan troglodytes
(panTro4), Macaca mulatta (rheMac3), Mus musculus
(mm10) and Arabidopsis thaliana (tair10). The number
of available methylomes by species was also increased:
Homo sapiens (17), Pan troglodytes (5), Macaca mulatta
(6), Mus musculus (30) and Arabidopsis thaliana (18). We
restructured the database allowing the easy incorporation
of novel species and/or methylomes, which ensures that
the database will be always well-curated and maintained.

EPIGENOME-WIDE METHYLOME MAPS

A flow diagram delineating the implementation and main
features of NGSmethDB is shown in Figure 1. Short-read
data sets were pre-processed and aligned to the corres-
ponding reference genome using ‘NGSmethPipe’ (31),
and then profiling the methylation levels by means of
‘MethylExtract’ (32).

Alignment of short-reads

NGSmethPipe (http://bioinfo2.ugr.es/NGSmethPipe/)
implements several pre-processing steps to improve the
alignment quality, like the trimming prior to the adapter
detection. It uses ‘Bowtie’ (33) as an external aligner
applied on a three-letter alphabet. To map a higher
number of reads without compromising the mapping
quality, NGSmethPipe uses a ‘seed extension’ method
applied to the Bowtie alignments, similar to that used
in ‘miRanalyzer’ (34,35). Short-read alignment per se
is a highly parameterized process. Adding the
NGSmethPipe-specific parameters results in obtaining a
notable parameter space. Relaxed parameters will lead
to a higher coverage (i.e. many cytosines can be
profiled), but a higher number of incorrect alignments
can also be expected. On the contrary, strict parameters
might lead to a lower coverage, thereby discarding a
considerable amount of valuable information. For the
presented database, we carried out a careful study to
measure alignment accuracy as a function of the
seed length and number of mismatches to obtain the

best parameter set. NGSmethPipe now uses these
settings as default options (see the ‘Quick start’ section
in http://bioinfo2.ugr.es/NGSmethPipe/Manual.html for
a complete list of defaults).

Methylation profiling

For the methylation profiling carried out by Methyl-
Extract (http://bioinfo2.ugr.es/MethylExtract/), we imple-
mented a number of stringent quality controls, carefully
chosen to minimize important error sources [see (32) for a
complete description]:

(1) A first potential error source in methylation profiling
is the bisulfite conversion failure. In modern proto-
cols, usually <1% of all unmethylated cytosines fail
to be converted by bisulfite treatment. Thus, some
positions are incorrectly profiled, i.e. some inferred
methylcytosines are actually unmethylated. To cope
with this error, we first implemented (as an option) a
method proposed by Lister (17) to detect reads with
a high number of unconverted cytosines: if this
option is activated, the reads with at least 90% of
unconverted cytosines in non-CpG contexts were
eliminated. Second, when a non-methylated genome
is available (e.g. the chloroplast genome for
Arabidopsis data sets), MethylExtract can associate
a P-value, based on binomial statistics, and a false
discovery rate to the extracted methylation levels [see
(32) for details]. For the sake of uniformity, and
given the lack of non-methylated genomes for all

Figure 1. Flow diagram showing the implemented steps and main
features of NGSmethDB.
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the included species, we do not use this feature in
populating NGSmethDB. However, when using the
data mining tools, the user can choose the minimum
coverage required for a cytosine methylation context.
In addition, the methylation browser shows all the
individual methylation values.

(2) Other potential sources for incorrect methylation
profiling are sequencing errors. We used the
assigned Phred score (36) to limit the contribution
of incorrectly sequenced bases. By setting Q� 20,
we are only accepting bases with a P< 0.01 to be
incorrectly called.

(3) In methylation profiling, SNVs are probably the
most disregarded error source. Over two-thirds of
all SNPs occur in a CpG context, having two
alleles: C/T or G/A (37). Most other tools would
interpret a C>T substitution as an unmethylated
cytosine, although a certain number of them are
actually SNVs, and therefore the inference would
be wrong. A C/T SNV manifests on the complemen-
tary DNA strand as an adenine, while bisulfite de-
amination does not affect the guanine on the
complementary strand (38). We take advantage of
this observation to detect putative SNVs by means
of a threshold method based on VarScan, thus
avoiding subsequent erroneous methylation profiling.

(4) Duplicated (clonal) reads provoked by the polymer-
ase chain reaction step adds another layer of poten-
tial errors in methylation profiling. MethylExtract
implements an option to delete duplicated reads
without eliminating meaningful biological informa-
tion. In populating NGSmethDB, we used this
option of MethylExtract.

(5) Lastly, when needed, we carried out 50 end trimming
of reads. As implemented in ‘Bismark’ (39), the first N
nucleotides are removed from the 50 end of the read
(3nt in case of the MspI restriction sites of the
reduced representation bisulfite sequencing protocol).

Methylome maps

The resulting high-quality methylomes, obtained under
uniform settings as indicated earlier in the text, were
stored in a ‘MySQL’ database back-end, which is used
to serve visualization, data mining and database dumps.
Methylation maps for minimum coverages of 1, 3, 5 or 10
reads (http://bioinfo2.ugr.es/NGSmethDB/database.php)
were generated. We used ‘Perl’ scripts to automate data
parsing and database management.

An outstanding feature of MethylExtract is the calling of
SNVs from the same sequence library of bisulfite-treated
DNA used to infer methylation states. Therefore, besides
methylation tracks, SNV tracks were also generated for
each sample and made available for download or visualiza-
tion through the methylation browser.

THE METHYLATION BROWSER

The user interface was improved by replacing ‘Gbrowse’
with ‘Jbrowse’ (40,41), resulting in a methylation browser

with a fast and smooth scrolling and zooming mechanism
(Figure 2). This speeds data download and upload, and
requires light server resources.
Users can include their own data in ‘bigWig’, ‘VCF’,

‘gff’ or ‘bed’ formats (https://genome.ucsc.edu/FAQ/
FAQformat.html), thus comparing their data directly
with the NGSmethDB methylomes. User data sets are
not uploaded to the server, but instead opened directly
via the Java interface. This ensures a quick and stable
data integration without compromising the server stability
and response time.
RefSeq (30) gene names were indexed, thus making

them searchable via the browser interface. In addition,
NGSmethDB includes many other annotation tracks
(CpGislands, promoters, SNPs, repeats, isochores,
phastCons) that can be viewed and compared with the
methylation maps.
A detailed manual (http://bioinfo2.ugr.es/NGSmeth

DB/manual.php) guides the user through the different
steps to quickly browse the Web site and download
NGSmethDB methylation maps. Furthermore, a general
and context-dependent help about searching, moving,
zooming and showing/hiding tracks with JBrowse has
been interactively integrated in the proper methylation
browser window.

A UCSC TRACK HUB FOR NGSmethDB
METHYLOMES

We also made NGSmethDB methylation maps directly
available through a UCSC track hub, a web-accessible
directory of genomic data that can be viewed on the
UCSC genome browser (http://genome.ucsc.edu/golden
Path/help/hgTrackHubHelp.html). Therefore, high-
quality NGSmethDB methylomes can be visualized and
tuned on the UCSC genome browser as native tracks.
This allows the comparison with a wide range of third-
part annotations, in particular phenotype and disease
associations, or the ENCODE annotation tracks.

DATA MINING TOOLS

Similar to the first version of NGSmethDB, the user inter-
face was based on the practical appeals of epigenome-wide
analysis: namely, the possibility to (i) obtain methylation
values for particular chromosomal regions or tissues,
(ii) analyze promoter methylation for a set of tissues and
(iii) compare methylation patterns across a set of different
tissues. To this end, three different database mining tools
were developed to allow the user to filter, compare,
analyze and download the methylation data in different
species, tissues, developmental stages or diseases:

(1) Comparison of cytosine methylation levels in differ-
ent tissues. The user can select the sequence context
(CG or CHG) and the methylation states for com-
parison: methylated versus unmethylated, methylated
versus intermediate, unmethylated versus intermediate
or all of them.
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(2) The methylation states of different gene regions,
including gene body, promoters, 30 ends, exons and
introns, can be retrieved/downloaded.

(3) Methylation data for single cytosines within a given
chromosome region can be retrieved/downloaded;
a detailed table is provided with direct links to our
methylation browser and the UCSC genome
browser.

New features in this version of the database are the
possibility to supply a customized set of regions in bed
format (https://genome.ucsc.edu/FAQ/FAQformat.html)
to obtain the methylation levels or a gene list to retrieve
the data in a given gene region. Depending on the amount
of requested data (mainly, the number of tissues), some
of these tools might take several hours to process the
requested data. To overcome this limitation, we

implemented PHP sessions (http://php.net/manual/en/ref.
session.php), thus offering the user the possibility to
submit >1 job at a time. An ID is assigned to each
submitted job. Running jobs are shown under the
header ‘running’, providing the possibility to also cancel
the jobs. Once finished, a long life link becomes available,
allowing the user to retrieve the results within 30 days. If
there are >5 jobs running from the same user, the next job
gets queued and will be executed automatically as soon as
the previous job has finished.

WORKING EXAMPLES

As a first example, the hypomethylation of the DACH1
tumor suppressor gene (42) was analyzed by means of
NGSmethDB. Human DACH1 on chromosome 13

Figure 2. Gene hypomethylation in the DACH1 tumor suppressor gene. The figure shows the average CpG methylation in the gene body (Gene
body Overview), the methylation levels at single cytosines (detailed table) and its visualization in the methylation browser for normal (hmec) and
cancer (hcc1954) breast cell lines. Average and single-base CpG methylation levels can be downloaded for further analysis. Short-read samples
GSM721195 HMEC-methylC-Seq and GSM721194 HCC1954-methylC-Seq (42), downloaded from GEO (29), were used to generate the corres-
ponding methylome maps.
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encodes a chromatin-associated protein that associates
with other DNA-binding transcription factors to
regulate gene expression and cell fate determination
during development. Figure 2 shows the results when
analyzing the gene body methylation of this gene for
normal (hmec) and cancer (hcc1954) breast cell lines.
NGSmethDB first shows a summary statistics of the
methylation levels across the used set of tissues
(Figure 2, top), also providing links to a table with
detailed methylation levels at single cytosine resolution
(Figure 2, middle) and its visualization in the methylation
browser (Figure 2, bottom). A global gene

hypomethylation in breast cancer, as compared with
healthy tissue, can be clearly appreciated.
A second example shows the analysis of the

hypermethylation of the GSTP1 promoter in cancer.
This gene codes for the glutathione S-transferase Pi-1,
an enzyme involved in cellular detoxification of xeno-
biotics and carcinogens, being a promising biomarker
for cancer diagnosis and prognosis (43). The methylation
map of the promoter region in normal and cancer breast
tissue provided by NGSmethDB is shown in Figure 3
(bottom). A detailed table with methylation values at
individual CpGs is shown in Figure 3 (middle).

Figure 3. GSTP1 hypermethylation in breast cancer. GSTP1 codes for the glutathione S-transferase Pi-1. The screenshot of the NGSmethDB
methylation browser (bottom) corresponds to positions 67349906–67356735 of the human chromosome 11. The promoter region, as defined in
ref. (44), and the NGSmethDB methylation maps for normal (hmec) and cancer (hcc1954) breast cell lines are shown. The healthy breast promoter
appears as unmethylated (green vertical bars), whereas the breast cancer tissue is heavily methylated (red vertical bars). Some rows of the detailed
methylation table at single cytosines with coverage of at least five reads are shown (middle).
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NGSmethDB analysis clearly shows the hypermethylation
of this promoter region in breast cancer.
Lastly, NGSmethDB methylomes have been used to

compile ‘CpGislandEVO’ (45), a specialized genome
platform for the comparative evolutionary genomics of
CGIs. Both databases may be useful for studies relating
DNA methylation and the evolutionary rates of different
genome elements (46).

CONCLUSIONS

NGSmethDB provides high-resolution epigenome-wide
methylome maps for a collection of the best-assembled
eukaryotic genomes. All methylome maps stored in the
database were obtained under uniform conditions, i.e.
using strictly the same bioinformatics protocol for all
raw data sets including the same parameter settings and
the same stringent quality controls. SNV variants,
obtained jointly with methylation values, have also been
provided as accompanying tracks, which may facilitate to
analyze the relation between DNA methylation and
sequence variation. To widen comparative studies, the
NGSmethDB methylome maps are connected to a
UCSC track hub, thus allowing the comparison to third-
part phenotype or disease annotation tracks.
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