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ABSTRACT

Tissue-specific alternative splicing is a key mecha-
nism for generating tissue-specific proteomic diver-
sity in eukaryotes. Splicing regulatory elements
(SREs) in pre-mature messenger RNA play a very
important role in regulating alternative splicing.
In this article, we use mouse RNA-Seq data to
determine a positive data set where SREs are
over-represented and a reliable negative data set
where the same SREs are most likely under-
represented for a specific tissue and then employ
a powerful discriminative approach to identify
SREs. We identified 456 putative splicing enhancers
or silencers, of which 221 were predicted to be
tissue-specific. Most of our tissue-specific SREs
are likely different from constitutive SREs, since
only 18% of our exonic splicing enhancers (ESEs)
are contained in constitutive RESCUE-ESEs. A rela-
tively small portion (20%) of our SREs is included in
tissue-specific SREs in human identified in two
recent studies. In the analysis of position distribu-
tion of SREs, we found that a dozen of SREs were
biased to a specific region. We also identified two
very interesting SREs that can function as an
enhancer in one tissue but a silencer in another
tissue from the same intronic region. These
findings provide insight into the mechanism of
tissue-specific alternative splicing and give a set
of valuable putative SREs for further experimental
investigations.

INTRODUCTION

In higher eukaryotes, protein coding genes are transcribed
as precursors of messenger RNAs, in which exons are

separated from each other by intervening introns that
have to be spliced out to produce a mature mRNA.
A gene may generate different mature mRNA isoforms
by selectively including different combinations of exons.
This kind of alternative splicing (AS) is a key mechanism
for regulating gene expression and for generating prote-
omic diversity. Recent studies indicate that >90% of
human genes undergo alternative splicing (1,2).
In addition to the core splicing signals at the 50 splice

site, the 30 splice site and the branch point, other splicing
regulatory elements (SREs) are pivotal to ensure that
splicing events occur accurately and efficiently (3,4).
These SREs are classified as exonic splicing enhancers
(ESEs) or silencers (ESSs) if they promote or inhibit the
inclusion of the exon where they reside, and as intronic
splicing enhancers (ISEs) or silencers (ISSs) if they
enhance or inhibit the inclusion of the exon adjacent to
the intron where they reside. Experimental approaches
such as systematic evolution of ligands by exponential
enrichment (SELEX) (5), UV crosslinking and immuno-
precipitation (CLIP) (6) and splicing reporter system (7),
have been employed to identify SREs.
Computational approaches also provide a means of

identifying putative SREs that can be validated experi-
mentally. A number of SREs including RESCUE-ESE
(8) and PESE/PESS (9) have been identified from consti-
tutively spliced exons using computational methods and
some of them have been demonstrated in experiments to
function as predicted. Some ESSs were also identified
from pseudo exons by computational methods (10). For
a detailed review, see (11).
Alternative splicing plays an important role in generat-

ing tissue specificity. Recent high-throughput studies
based on microarray have shown that 42% cassette
exons examined are differently expressed in at least 1 of
48 human tissues (12). This percentage even reaches
72% in a recent RNA-Seq study (1). Tissue-specific alter-
native splicing is thought to be largely regulated by
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tissue-specific splicing factors and tissue-specific expres-
sion of constitutive splicing factors (2,13). Therefore, it
is important to identify SREs that are the targets of
these splicing factors.
Brudno et al. (14) identified brain-specific intronic

SREs from a relatively small data set that includes 25
brain-specific cassette exons. More recently, Castle et al.
(12) measured the expression level of a large number of
exons and exon-exon junctions in 48 human tissues using
microarray, and then determined up- and down-regulated
cassette exons in each tissue. From these cassette exons,
they identified 143 tissue-specific motifs. Wang et al. (15)
determined the ratio of expression level of cassette exons
in different pairs of human tissues from exon arrays and
used a linear regression model to identify tissue-specific
SREs.
The key technique used in all computational methods

for identifying SREs is to find short nucleotide sequences
(typically hexamers or octamers) that are over-represented
in a positive data set relative to a background data
set. For example, constitutive RESCUE-ESEs (8) are
hexamers that are over-represented in constitutive exons
with weak splice sites comparing to introns and constitu-
tive exons with strong splice sites. In another example
(12,14), tissue-specific SREs were identified by contrasting
the frequencies of hexamers in a positive data set including
cassette exons and their flanking intronic region to the
frequencies of hexamers in a background set including
sequences neighboring to the cassette exons. However,
if a more reliable negative data set, where SREs
over-represented in the positive data are most unlikely
present, is used, such a discriminative approach will
significantly improve the power of detecting SREs as
already demonstrated in identifying transcriptional
factor binding sites (16–18).
In this article, we used mouse RNA-Seq data (19) to

determine a positive and a negative data set for each
type of SREs in a specific tissue. For example, the
positive data set for ESEs contains cassette exons that
are included in the dominant isoforms of genes, whereas
the negative data set consists of the cassette exons that are
excluded in the dominant isoforms of genes. We then
employed a discriminative approach to identify putative
SREs. Since the expression level of each mRNA isoform
can be calculated from the RNA-Seq data more accurately
than from exon microarray data used in previous work
(20,21), our method can reliably determine the positive
and the negative data sets, which enables our discrimina-
tive approach to identify SREs more reliably.

MATERIALS AND METHODS

Data sets

Mouse RNA-Seq data of Mortazavi et al. (19) for three
tissues (brain, liver and skeletal muscle) were selected in
our study. The mouse genome and the KnownGene table
were also downloaded from the University of California
Santa Cruz genome database (UCSC) Mouse July 2007
(mm9). The mouse RNA-Seq data set contains 140
millions reads of 25 nt. Mortazavi et al. have mapped

these reads against the expanded mouse genome, which
consists of the standard UCSC mm9 genome and the
42 nt splice-crossing sequence for each exon junction
documented in the UCSC KnownGene table. Reads that
could be mapped to multiple loci of the genome were
excluded, and 30–40 million uniquely mapped reads for
each tissue from two replicates were used in our analysis.

We also selected 922 distinct hexamers from the
database SpliceAid (22) as experimentally validated
SREs for comparison purpose. SpliceAid is the latest
database that collects experimentally assessed target
RNA sequences bound by splicing proteins in humans.
However, some sequences in SpliceAid are relatively
long, and thus part of such long sequences may not be
core splicing motifs. In fact, if we take hexamers from
all the sequences in SpliceAid, we can get a total of 2321
distinct hexamers that may contain many false SREs.
To get more reliable SREs, we only took all sequences
assessed by SELEX from the SpliceAid. Since the length
of the randomized sequences used in SELEX was usually
larger than the length of a protein binding site, multiple
alignment of the selected sequences was performed to
locate the imbedded consensus sequences (5). These con-
sensus sequences were manually checked and extracted,
which gave 922 distinct hexamers.

Overview of computational strategy

Our goal is to identify short motifs that are over-
represented in the region flanking alternative splicing
sites in a specific tissue. Alternative splicing usually
occurs at weak splicing sites with highly conservative
flanking sequences (23). So these over-represented motifs
most likely function as enhancers or silencers to assist the
spliceosome to make a splicing decision.

Our analysis could be divided into several steps depicted
in Figure 1a. We first identified cassette exons that are also
referred to as alternatively spliced exons (ASEs) from the
UCSC mouse KnownGene table. For a specific tissue, we
then divided the set of ASEs into an inclusion set and an
exclusion set as follows. Using the RNA-Seq data, we
calculated the expression level of each isoform of genes
that contain ASE(s). If a majority (�90%) of the
isoforms of a gene include an ASE, then the ASE is in
the inclusion set; on the other hand, if only a minority
(�10%) of the isoforms of a gene include an ASE, then
the ASE belongs to the exclusion set. The inclusion and
exclusion sets also include 400 intronic nucleotides
upstream and 400 intronic nucleotides downstream of
the selected ASEs. For each tissue, we compared the
frequency of each hexamer in the inclusion set with the
frequency of the same hexamer in the exclusion set to
determine if the hexamer is over-represented. The
hexamers that are over-represented in one tissue but not
over-represented in the other tissue are identified as
putative tissue-specific SREs, while the hexamers
over-represented in both tissues are identified as SREs
common in both tissues. Finally, annotations in three
tissues were integrated and similar putative SREs were
clustered to form a motif.
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ASE selection

We selected ASEs and some intronic nucleotides flanking
the ASEs to identify SREs for the following reasons. First,
AS predominantly generates ASE events in both human
and mouse (1,19). Second, other AS events may not
generate sequence data compatible to those generated by
ASE events. For example, alternative 50 or 30 splice site
usage lacks an alternative 30 or 50 splice site (24). ASEs
were selected from the KnownGene table with a strict
criterion. An ASE was selected if at least one isoform
include the ASE and at least one other isoform do not
include any part of the ASE and only these two types
of isoforms exist. For example, the right AS event in
Figure 1b was not selected in our analysis because
although an ASE was included in isoform 1 and skipped
in isoform 2, this exon and its flanking regions might
also contain SREs governing alternative 30 splice site
since isoform 3 included this ASE partially. Different
genes with overlapped open reading frame were also
excluded for the simplicity and accuracy of calculating
gene expression levels.

Calculation of expression level and inclusion ratio

Expression level for each transcript isoform of a gene
was calculated with the algorithm of Jiang et al. (25).

This algorithm modeled the count of RNA-Seq reads
falling into a region of each gene as a Poisson’s variable
with a mean proportional to the length of the region. For
an exon of length l, Jiang et al. used the effective exon
length l�r in the mean of the Poisson’s random variable,
where r is the read length, since l�r is the number of
possible loci of the exon that a read could be mapped
to. However, since we only kept uniquely mapped reads
and excluded the ambiguous reads that could be mapped
to multiple places of the genome, we used an effective exon
length l�r�m, where m is the number of 25-nt subse-
quences of the exon mapped by multiple-mapped reads.
To find out these multi-mappable regions, we re-mapped
all possible 25-nt subsequences of candidate ASEs and
splice junctions against the same expanded genome
described above using Bowtie (version 0.9.9.3), an
ultrafast and memory-efficient program for the alignment
of short DNA sequences to a large genome (26).
After the expression level of each isoform of genes with

ASEs were calculated, the inclusion ratio of an ASE in a
specific tissue was calculated as the ratio of the expression
level of the isoform with the ASE to the total expression
level of all isoforms of the gene.

SRE searching

For each tissue, all ASEs with an inclusion ratio �0.9 were
put together as the exonic inclusion set, and 400 intronic
nucleotides upstream or downstream of the ASEs were put
together as the intronic inclusion set. All ASEs with inclu-
sion ratio �0:1 were selected as the exonic exclusion set,
and 400 intronic nucleotides upstream or downstream of
the ASEs were selected as the intronic exclusion set. The
15-nt-long splicing acceptor site consensus Y10NCAG/G
and the 9-nt-long donor site consensus MAG/GURAGU
(27) were not included in corresponding exonic and
intronic sequences.
To identify ESEs and ESSs, we calculated the

frequencies of each of 4096 possible hexanucleotides, fTI
and fTS, in the exonic inclusion set and exclusion set of
tissue T. The z-score (8,9) of the hexamer in tissue T was
then given by

ZT ¼
fTI � fTSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð 1
NTI

+ 1
NTS
Þpð1� pÞ

q

where NTI and NTS are the total number of hexamers
in the inclusion and exclusion sets, respectively, and
p=(NTIfTI+NTSfTS)/(NTI+NTS). Tissue-specific ESEs
were identified as over-represented hexamers in the
exonic inclusion set of tissue T1 but not over-represented
in the exonic inclusion set of tissue T2. To test the statis-
tical significance of over-representation under the null
hypothesis of fT1I

� fT1S
=0, we considered hexamers

with ZT1
> 2.1701 (P< 0.03, two-tail test) as being over-

represented. The 0.03 cutoff value for the P-value was
selected based on the distribution of P-values as will
be described in ‘Discussion’ section. To test the statis-
tical significance of non-over-representation, we assumed
the null hypothesis of over-representation as ZT2

=2.1701

UCSC mouse KnownGene table

Expression level and inclusion ratio calculation

Brain Liver Muscle

inclusion set 

- - -- - -- - -- - -- - -
Junction reads Exonic reads

RNA-Seq reads

Tissue 1

T
issue 2

Candidate ASEs

Search SREs in upstream introns, exons and downstream introns

recnahnerecnelis

silencer
enhancer

Pick

 in
exclusion set &

Isoform 1
Isoform 2
Isoform 3

Selected Removed

(a)

(b)

Figure 1. (a) Schematic flow chart for the identification of
tissue-specific SREs. (b) Example of genes with more than two
isoforms that were selected or excluded in our analysis. The left one
was selected for further analysis since the ASE was either included or
skipped in each isoform. The right one was not selected in our analysis
because isoform 3 does not strictly skip the ASE.
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and considered hexamers with ZT2
<�1.8808+

2.1701=0.2893 (P< 0.03, one-tail test) as non-over-
represented hexamers.
For each pair of tissues (three pairs in total), we

compared the z-score of each hexamer as shown in
Figure 2. Hexamers with ZT1

� 2:1701 in tissue T1

but ZT2
� 0:2893 in tissue T2 were considered as tissue

T1-specific ESEs (P< 0.032 ). Hexamers with both ZT1

and ZT2
� 2:1701 (P< 0.032 ) were identified as ESEs

common to both tissues. The interval (0.2893, 2.1701) of
a z-score corresponds to the unsure region where we do
not have statistical evidence to decide whether a hexamer
is over-represented or not.
Similarly, tissue-specific ESSs were identified as

hexamers over-represented in the exonic exclusion set of
tissue T1, but not over-represented in the exonic exclusion
set of tissue T2. Therefore, hexamers with ZT1

� �2:1701
in tissue T1 but ZT2

� �0:2893 in tissue T2 were con-
sidered as tissue T1-specific ESSs (P< 0.032). Hexamers
with both ZT1

and ZT2
� �2:1701 (P< 0.032) were

identified as ESSs common to both tissues.
This searching process was repeated for upstream

intronic sequences of 400-nt-long and downstream
intronic sequences of 400-nt-long. The z-score of each
hexamer was computed for each pair of tissues as
depicted in Figure 2. Tissue-specific and common ISEs
and ISSs in upstream and downstream introns were then
identified based on the z-scores in the same way as ESEs
and ESSs were identified.

Integration and clustering

After implementing the above steps, we got six classes of
SREs, which include ESE, ESS, us’ ISE, us’ ISS, ds’ ISE
and ds’ ISS, where us’ and ds’ stand for upstream and
downstream, respectively. We integrated all of them into
one table (Supplementary Table S1) to make their rela-
tionship more clear with the following annotation rule.
Every SRE is associated with three characters to indicate
its role in brain, liver and muscle. The first character can
be ‘B’, ‘�’ or ‘?’ to indicate that the SRE is present, absent
or unsure in brain. Similarly, the second character can be
‘L’, ‘�’ or ‘?’ and the third character can be ‘M’, ‘�’ or ‘?’.
Note that tissue specificity is a relative concept. For
example, an ESE can be present in brain but not in
other tissues. We annotated this type of ESE as
ESEB��. An ESE can also be present in both brain and
liver but not in muscle. We represented this type of ESE as
ESEBL�. If an SRE was present in all three tissues, we
referred to it as a common SRE.
We also clustered similar SREs using the hierarchical

clustering algorithm (8) for each of six classes of SREs to
determine splicing motifs. The Hamming distance was
used in the clustering algorithm as the dissimilarity
metric between any two SREs. We say that two SREs
have incompatible annotations if any character associated
with the SREs is a letter (B, L or M) in one SRE but a ‘�’
in the other SRE. For example, two SREs, annotated as
‘BL�’ and ‘BLM’, respectively, are incompatible for their
annotation in muscle, but two SREs annotated as ‘BL�’
or ‘BL?’ are compatible. Since we do not want to put those
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Figure 2. z-scores for all hexamers in liver and muscle. (a) z-scores
in exons. ESEC, ESEL and ESEM stand for common ESE, liver-specific
ESE and muscle-specific ESE, respectively. (b) z-scores in 400 nt
intronic sequences upstream of the exons. (c) z-scores in 400 nt
intronic sequences downstream of the exons.
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incompatible SREs into the same cluster, we add a suffi-
ciently large value (>6) to the dissimilarity distance
between any two incompatible SREs. Therefore, each
cluster only contains compatible SREs including SREs
annotated with ‘?’. The dissimilarity cutoff for each
cluster was chosen to be 2.0, which was relatively small
to make the clustering result more reliable.

Position bias test

The chi-square goodness of fit test was adopted to deter-
mine if an SRE is uniformly distributed in a selected
region or is biased toward certain specific locations. The
selected region includes introns or exons in which the
SRE was predicted. For example, for SREs annotated as
ESS�LM, the exonic exclusion sets of liver and muscle were
used to test position bias. Since the exons have different
lengths, we only chose exons of �110 nt, and took 55 nt
from each end of the exon. For introns, we took first
395 nt upstream or downstream of the exon. An SRE
which is a hexamer can be mapped to 390 positions of
an intronic sequence or 100 positions of an exonic
sequence. We, therefore, divided each exonic or intronic
sequence into 10 or 39 intervals, each with 10 nucleotides.
A significance level of 0.01 was used to reject the null hy-
pothesis that an SRE uniformly appears in all intervals.
Since for a uniform distribution, the chi-square test is
robust when the average number of the SREs falling
into an interval is �2 for a significance level as small as
0.01 (28), only SREs with �78 counts in intronic se-
quences or �20 counts in exonic sequences were chosen
in the analysis.

Comparison with constitutive data

We collected two sets of sequences from the KnownGene
table and put them together as the data set for constitutive
exons. We took 49 649 internal exons of genes with only
one isoform as the first data set. The second set consists of
34 403 exons locating in alternatively spliced genes but
included by all isoforms. In addition to exons, intronic
sequences of 400 nt upstream or downstream of the con-
stitutive exons were also collected as the intronic consti-
tutive data set. Note that these data sets from constitutive
exons and their flanking intronic regions are similar to
the inclusion set of ASEs, since all exons in the data sets
are constitutively included in the mature mRNA. We
compared the frequency of an SRE in the constitutive
data with the frequency in its corresponding positive
data. The frequency of an SRE in the negative data was
also compared with that in the positive data. For example,
when we examined ESEBLM, the constitutive data were
constitutive exons; the positive data were exonic inclusion
set of brain, liver and muscle; and the negative data were
the exclusion sets of these three tissues. If we examined ds’
ISS�L�, the constitutive data were constitutive down-
stream intronic sequences; the positive data were down-
stream intronic exclusion set of liver; and the negative data
were downstream intronic inclusion set of liver. Frequency
comparison was only performed for clusters annotated
without ‘?’ (369 SREs in total).

RESULTS

Putative enhancers and silencers

As shown in Table 1, we got 300–400 ASEs in the inclu-
sion and exclusion sets of three tissues. The average length
of ASEs is 123 nt, and the average length of upstream
and downstream introns is 5900 nt and 6116 nt, respective-
ly. This is consistent with the observation that ASEs are
generally short and flanked by long introns (23).
The z-scores for hexamers in liver and muscle data sets

and the regions defining each type of the SREs are plotted
in Figure 2. The z-scores for hexamers in other two
pairs of tissues (brain versus liver and brain versus
muscle) are included in Supplementary Figure S1 and
S2. It is seen from these figures that most hexamers are
not over-represented in any tissue, and thus are not an
SRE, as expected.
After integrating all the SREs identified in these figures,

we predicted 456 putative enhancers and silencers which
are listed in Supplementary Table S1. The statistics of
these 456 SREs are summarized in Table 2. The second
row annotated with ‘BLM’ contains 45 SREs common
to all three tissues. The next three rows consist of
SREs annotated with ‘BL?’, ‘B?M’ and ‘?LM’, which are
common to two tissues but may or may not be an SRE in
the third tissue. The next 12 rows contain a total of 221
tissue specific SREs. Note that only 18, 8 and 15 SREs are
unique to brain, liver and muscle, respectively.

Table 2. Number of common and tissue-specific SREs

Anno. ESE ESS us’ ISE us’ ISS ds’ ISE ds’ ISS Total

BLM 15 11 6 3 4 6 45

BL? 17 15 7 11 13 13 76
B?M 12 14 9 9 9 11 64
?LM 21 10 10 13 6 7 67

B–? 2 2 5 6 7 4 26
B?– 6 1 2 8 6 4 27
–L? 3 2 10 8 4 4 31
?L– 10 3 2 4 8 8 35
–?M 6 4 6 5 2 4 27
?–M 6 2 4 2 5 7 26
BL– 0 0 1 0 1 0 2
B–M 0 1 0 1 1 0 3
–LM 0 0 0 2 0 1 3
B– – 8 1 4 2 3 0 18
–L– 0 0 1 1 2 4 8
– –M 2 2 2 2 2 5 15
TSSE 43 18 37 41 41 41 221

The last row contains the total number of tissue-specific splicing
elements for each type of SREs, which equals to the sum of rows
with annotation ‘–’.

Table 1. Number of ASEs used in SRE searching

Brain Liver Muscle

Inclusion set 399 369 411
Exclusion set 372 454 408
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We compared our results with constitutive exonic
splicing enhancers RESCUE-ESE in mouse (29,30).
Among 508 mouse RESCUE-ESEs, only 43 (8%) are
included in the SREs we identified, 20 of which are also
ESEs in our analysis. Note that our SREs include 108
ESEs and <20% (20/108) are also RESCUE-ESE. This
shows that most of our SREs are different from
RESCUE-ESEs possibly due to their tissue-specificity.
In addition, we compared our results with tissue-specific

SREs in human identified recently by other two groups
(1,12), as shown in Figure 3. Using human RNA-Seq data,
Wang et al. (1) identified 362 SREs in 15 tissues and cell
lines, of which 51 distinct elements were identified as SREs
specific to brain, liver and muscle. Among these 51 SREs,
13 (25.5%) are also included in the SREs we identified.
To compare our SREs with the results of Castle et al.
(12), we extracted all the hexamers significantly

over-represented (P< 10�3) in up-regulated or down-
regulated cassette exons in samples related to brain, liver
and muscle. This gave 783 distinct hexamers in total, of
which 89 (11.4%) are also included in the SREs we
identified. As shown in Figure 3, the number of SREs
identified by any two studies is relatively small. Overall,
20% (93/456) of our SREs are in the SREs of Wang et al.
and/or Castle et al.

We also compared our results with two tissue-specific
motifs in mouse identified by Sugnet et al. (43) from their
microarray data. The first CU-rich motif with consensus
sequence UGYUUUC was identified by Sugnet et al. in
upstream of brain-included exons. The most similar SREs
in our results are UGAUUU (us’ ISE?LM) and UGAUUG
(us’ ISEBL?). The second motif with consensus sequence
UACUAAC was identified by Sugnet et al. in downstream
intron of muscle-included exons. We can find two
hexamers in our ds’ ISE consistent with this motif,
which are CCAAAC (ds’ ISEB?M) and CGCUAA (ds’
ISEB?M).

We further compared our results with 992 hexamers
selected from the SpliceAid databases (22) (see
‘Materials and Methods’ section for the selection of 992
hexamers). About 26% (118/456) of our SREs are among
these 992 hexamers (see Supplementary Table S1 for
details). On the other hand, 20% (10/51) of the SREs
identified by Wang et al. (1) and 22% (173/783) of the
SREs of Castle et al. (12) are also included in the 992
hexamers. This shows that our study gives slightly
higher portion of experimentally validated SREs than
other two studies.

To systematically examine the quality of our SREs and
choose reliable candidate SREs for further analysis, we
ranked all the SREs without ‘?’ in their annotations by
their final P-values (product of P-values in three tissues).
The top 15 SREs and the relevant experimental evidence
reported in the literature are listed in Table 3. Some of
the 15 SREs may actually come from the same motif;

Table 3. Fifteen SREs with most significant P-values

SREs Annotation P-value Reference Related experimental results

CCUGCC ESSBLM 2.43e-18 (31) CCUG repeats specifically interact with MBNL1.
UCUAUC ds’ ISS��M 7.53e-13 (32,33) Downstream ISE UCUAUC, bound by protein HRP-2, regulates alternative splicing

of exon 16 in unc-52 gene of C. elegans.
CUCUCU us’ ISS�LM 1.23e-12 (34–36) Within polypyrimidine tract, interact with PTB, responsible for the skipping of

N1 exon of mouse c-src.
CUGCCU ESSBLM 1.51e-10 Same as CCUGCC.
CUAUCU ds’ ISS��M 1.64e-10 May be from the same motif as UCUAUC.
GCGCGC ds’ ISS��M 2.20e-10
GCCUGC ESSBLM 2.78e-10 Same as CCUGCC.
AAAUAA ESSBLM 3.16e-10
UGCAUG ds’ ISE��M 3.95e-10 (37–39) When bound by tissue-specific factor, Fox-1 Protein family, it acts as splicing enhancer.
UGCAUG ds’ ISS�L� 1.15e-09
ACACAC us’ ISS��M 1.58e-09 (40) Intronic CA repeat could function as enhancers or silencers, depending on its proximity

to the 50 ss.
UGGAGC ESEBLM 2.79e-09
UUCUUC ds’ ISSBLM 2.94e-09 (41) It is the second pyrimidine-rich(PY) elements in the three PY elements downstream of

CFTR exon 9.
AUCUAU ds’ ISEBL� 7.24e-09
GCAGCA us’ ISEBLM 7.40e-09 (42) splicing factor CUGBP1 interacts with GCA repeats located within the MEF2A

mRNA.
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Figure 3. Venn diagram for the number of SREs identified in three
studies.
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for example, CCUGCC, CUGCCU and GCCUGC may
come from the CCUG repeat. We examined some
well-studied SREs by comparing studies in the literature
and their annotations in our result. Some of our annota-
tions match previous studies very well. For example, UCU
CUC and CUCUCU are both identified as us’ ISS�LM in
our analysis. Previous experimental study has identified
the conserved CUCUCU sequence within intron regions
as splicing silencer in non-neuronal cells, since it is respon-
sible for repressing splicing of neuron-specific N1 exon of
mouse c-src transcript in nonneuronal cells (34), possibly
by interacting with PTB proteins (44). We will discuss
several interesting SREs in the following sections.

Position bias of SREs

Since splicing factors function primarily in the vicinity of
a splice site (45), it is possible that positions of some SREs
are biased towards certain locations, while non-functional
sequences may tend to locate more randomly. To test if
SREs have position bias, we adopted chi-square goodness
of fit test as described in ‘Materials and Methods’ section.
Under the selection criterion described in ‘Materials and
Methods’ section, 156 SREs were selected for position bias
test (Supplementary Tables S2). About 46% (71/156) of
SREs show significant position bias at a significance level
of 0.01. We ranked these SREs according to their P-
values, and visually examined the position distribution
of top 30 SREs with most significant P-values. We
found that 12 SREs’ positions show significant position
bias, eight of which were depicted in Figure 4. It is inter-
esting to see that not all the SREs are biased towards a

splice site. The common us’ ISS AAGAUU and the
common us’ ISE UUGUAC occupy the position near
200-nt upstream of the acceptor site as their preferred
location. The common ds’ ISS UUCUUC is abundant
almost evenly in the region <170-nt downstream of the
ASE but is less abundant in the region further away from
the splice site. The common ESS UUAAAG prefers the
interval between 22 and 31-nt downstream of the 50 end of
the ASE. We also checked position distributions of other
SREs with P � 0:01, but did not find any general pattern
for position bias.
Two tissue-specific SREs, CUCUCU (P=1.33e-16)

and UCUCUC (P=2.59e-14), which were identified as
upstream ISS�LM, showed most significant P-values.
They were clustered with other two SREs UCUCUU
(us’ ISS?LM, P=1.58e-10) and CUCUUU (us’ ISS?LM,
P=3.50E-06) in the clustering result described later.
The position distributions of CUCUCU, UCUCUC and
UCUCUU were shown in Figure 4. We also compared the
distribution of CUCUCU in three tissues’ exclusion sets
with that in inclusion sets as shown in Figure 5. The SRE
UCUCUC has a very similar position distribution that is
not shown here. We can see from Figure 5 that in the
exclusion set of liver and muscle, CUCUCU is not only
abundant, but also shows a significant position bias
towards the acceptor site while in the inclusion set, it is
less abundant and almost evenly distributed. Since the
region between 15 and 30 nt upstream of a 30 splice site
coincides with the location of the polypyrimidine tract, it
is highly possible that CUCUCU and UCUCUC are part
of the polypyrimidine tract. Note that Castle et al. (12)
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Figure 4. Position distribution of top eight SREs with smallest P-values in the position bias test. Each bar represents the average number of SREs
falling into a region of 10 nt divided by the number of intron or exon sequences used in analysis.
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found that UCUCU is enriched in the region from 35 to
110-nt upstream of tissue-regulated ASEs in human
tissues.
This result may imply the main position where this SRE

takes effect, since it is consistent with the finding that
polypyrimidine-tract binding protein (PTB; also known
as hnRNP I) silence splicing by binding to the
polypyrimidine tract and blocks the binding of U2AF
(35,36). Interestingly, this SRE was annotated as us’
ISS�LM, which implies that it is specific to liver and
muscle but not a us’ ISS in brain. We also checked its
position distribution in the brain data set, but no
position bias was found as shown in Figure 5. Our anno-
tation is consistent with the experimental evidence
showing that skipping of neuron-specific N1 exon of
mouse c-src in non-neuronal cells requires conserved CU
CUCU elements within polypyrimidine tract and down-
stream intron (34).
Comparing with the results of Castle et al. (12) and

Wang et al. (1), we got some identical and some different
findings for the SRE CUCUCU. Both our result and the
result of Castle et al. (12) indicate that CUCUCU is an
upstream ISS in liver, but Wang et al. (1) did not identify
it as an SRE in liver. In muscle, we identify CUCUCU as
an upstream ISS, but the data of Castle et al. (12) indicate
that it is an upstream ISE, and Wang et al. (1) did not
identify it as an SRE. In brain, the data of Castle et al.
(12) show that CUCUCU is over-represented in the
upstream of up-regulated ASEs (which is equivalent to

our upstream intronic inclusion set) but not in the
upstream of down-regulated ASEs (which is equivalent
to our upstream intronic exclusion set). Based on this ob-
servation, we may identify CUCUCU as an upstream ISE
in brain. However, data of Castle et al. (12) also show
that the expression of PTBP1, whose target motif is
CUCUCU, is down-regulated in brain. Hence, if CUCU
CU is an ISE, there must be another unknown SF that
binds to it. Another possibility is that PTBP1 is the only
SF that can bind to CUCUCU, and CUCUCU is always a
silencer; however, its silencing function is lost in brain due
to the low level of PTBP1. The RNA-Seq data of both
Mortazavi et al. (19) that are used in our study and Wang
et al. (1) indicate that CUCUCU is over-represented in
both upstream intronic inclusion and exclusion sets of
brain. This is in conflict with the microarray data of
Castle et al. (12). Nevertheless, combining the RNA-Seq
data of Wang et al. (1) and Mortazavi et al. (19) and the
expression level of PTBP1 reported by Castle et al. (12),
we can eliminate the possibility that CUCUCU is an ISE,
but predict it to be an upstream ISS with lost silencing
function in brain. Note that if we only use the information
of CUCUCU without using the information about the
expression level of PTBP1, the data of Castle et al. (12)
will predict CUCUCU to be an ISE, which is likely wrong;
the non-discriminative method will predict CUCUCU to
be both upstream ISS and ISE, which conflict with each
other; on the other hand, our discriminative method does
not identify CUCUCU to be an SRE in brain. Our result

−395 −305 −205 −105 −15
0

0.02

0.04

0.06
Inclusion set of brain

Exclusion set of brain

−395 −305 −205 −105 −15
0

0.02

0.04

0.06
Inclusion set of liver

Exclusion set of liver

−395 −305 −205 −105 −15
0

0.02

0.04

0.06

Upstream intron of AS exon

Inclusion set of muscle

Exclusion set of muscle

Figure 5. position distribution comparison for the us’ ISS�LM CUCUCU in upstream introns of the exclusion set and the inclusion set of brain, liver
and muscle. Each bar represents the average number of SREs falling into a region of 10 nt normalized by the number of intronic sequences used in
analysis.
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in this complicated case seems most reasonable, because
the most reasonable prediction is that CUCUCU is an ISS
generally but not function in brain, as we discussed earlier.
These studies indicate that CUCUCU may play an
important and complicated role in tissue-specific
splicing, particularly in brain and worth further experi-
mental investigation.

Clustering results

Some of the 456 SREs are very similar to each other.
These similar SREs may come from the same motif that
is bound by the same splicing factor. Our clustering
process resulted in 247 clusters as shown in Table 4 and
Supplementary Table S3. Relatively large number of
clusters is due to the fact that we used a relatively small
cutoff value (2.0) for the dissimilarity distance between
any two SREs in the same cluster.

After the clustering process, we re-annotated each
cluster to eliminate some ‘?’ annotation. For example,
one cluster consists of sequences with annotation ‘BL?’
and ‘BL�’, then we re-annotate all the elements in the
cluster as ‘BL�’. The high ratio between the number of
tissue-specific SREs and common SREs (221/45) observed
in Table 2 was decreased to 152/63 in Table 4, but the
ratio is still significantly large, implying that tissue-specific
motifs may play a very important role in splicing regula-
tion. The average number of SREs per cluster is 160/
63=2.54 for common SREs and 277/152=1.82 for
tissue-specific SREs, which implies that tissue-specific
motifs may be more conservative than common motifs.

Frequencies of identified SREs in constitutive exons

The 456 SREs were identified based on their frequencies
in the inclusion and exclusion sets of the ASEs. We
also wished to know the frequencies of these SREs in
the constitutively spliced exons and their flanking
intronic regions to gain more insight of the role of these
SREs. Using the constitutive data described in ‘Materials

(44) (11) (8) (10) (12) (0) (6)
0

0.5

1

E
S

E

(36) (3) (4) (2) (1) (0) (6)
0

0.5

1

E
S

S

(18) (5) (7) (13) (5) (2) (5)
0

0.5

1

us
’ I

S
E

(14) (7) (9) (20) (4) (2) (2)
0

0.5

1

us
’ I

S
S

(25) (10) (3) (0) (7) (7) (4)
0

0.5

1

ds
’ I

S
E

(23) (6) (8) (4) (0) (8) (8)
0

0.5

1

ds
’ I

S
S

BLM BL− B−M −LM B−− −L− −−M

Figure 6. Comparison of frequencies of different SREs in different data sets. The first bar in each group stands for the ratio of the frequency in
constitutive data to the frequency in the positive data. The second bar stands for the ratio of frequency in the negative data to the frequency in the
positive data. Number of SREs used in each comparison is shown in parenthesis.

Table 4. Number of common and tissue-specific splicing motifs

Anno. ESE ESS us’ISE us’ISS ds’ISE ds’ISS Total

BLM 15 (44) 13 (36) 9 (18) 7 (14) 9 (25) 10 (23) 63 (160)

BL? 2 (3) 3 (3) 3 (3) 2 (3) 4 (4) 3 (3) 17 (19)
B?M 0 (0) 3 (4) 1 (1) 2 (2) 0 (0) 1 (1) 7 (8)
?LM 3 (4) 2 (3) 0 (0) 1 (2) 1 (1) 1 (1) 8 (11)

B–? 0 (0) 1 (1) 2 (2) 3 (4) 3 (4) 2 (4) 11 (15)
B?– 2 (2) 0 (0) 0 (0) 4 (5) 3 (3) 2 (2) 11 (12)
–L? 2 (2) 1 (1) 4 (4) 2 (2) 1 (1) 2 (2) 12 (12)
?L– 4 (5) 1 (2) 1 (1) 0 (0) 1 (1) 3 (4) 10 (13)
–?M 0 (0) 1 (1) 1 (1) 1 (1) 1 (1) 1 (2) 5 (6)
?–M 1 (1) 1 (1) 1 (3) 0 (0) 2 (3) 1 (2) 6 (10)
BL– 5 (11) 1 (3) 2 (5) 3 (7) 4 (10) 2 (6) 17 (42)
B–M 4 (8) 2 (4) 3 (7) 4 (9) 2 (3) 3 (8) 18 (39)
–LM 4 (10) 1 (2) 5 (13) 8 (20) 0 (0) 2 (4) 20 (49)
B– – 7 (12) 1 (1) 4 (5) 2 (4) 3 (7) 0 (0) 17 (29)
–L– 0 (0) 0 (0) 1 (2) 1 (2) 3 (7) 3 (8) 8 (19)
– –M 3 (6) 3 (6) 3 (5) 1 (2) 3 (4) 4 (8) 17 (31)
TSSM 32 (57) 13 (22) 27 (48) 29 (56) 26 (44) 25 (50) 152 (277)

The last row contains the total number of tissue-specific splicing motifs
(TSSM) for each type of motifs. The number of hexamers in each type
of motifs is shown in parenthesis.
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and Methods’ section, we compared the frequency of
SREs in different data sets, as depicted in Figure 6. For
the clarity of comparison, frequencies in the constitutive
data and the negative data have been normalized by the
frequencies in the positive data.
First, let us look at the frequencies of the enhancers.

We would expect the constitutive exon data set to have
abundant enhancers to assist splicing. However, it is seen
from Figure 6 that enhancers we identified have lower
frequencies in the constitutive exon data set than in the
inclusion set of ASEs. This may be due to the following
two reasons. First, most of the tissue-specific enhancers
may be different from the enhancers present in the con-
stitutively spliced exons and flanking introns. This may
also explain why most of enhancers we identified are not
RESCUE-ESEs. Second, tissue-specific enhancers are
more abundant in ASEs than in constitutively spliced
exons. We also compared the frequencies of constitutive
RESCUE-ESEs in constitutive exons and our inclusion
sets of brain, liver and muscle, but no frequency difference
was found.
The frequencies of silencers are expected to be lower in

the constitutive data set than in the exclusion set of the
ASEs. Indeed, this is observed in Figure 6. Comparing the
relative frequencies of ESS with the frequencies of other
silencers and enhancers, we see that the relative
frequencies of ESS are generally the lowest. This may
imply that ESSs play a stronger role in AS than ISSs
and ISEs.
Another observation from Figure 6 is that the

frequencies of all SREs in the constitutive data set are
higher than the frequency in the corresponding negative
data set (exclusion set for enhancers and inclusion set for
silencers) of ASEs. Therefore, if we use the constitutive
data as the negative control data as did in (8,10,14,46)
to identify SREs, we would lose some detection power.
To verify this, we calculated the z-score and the corres-
ponding P-value of each of the 369 SREs by replacing the
negative data set used in the previous analysis with the
constitutive data set. We found that 179 SREs have a
P � 0:03, implying that 48.5% (179/369) of these SREs
would not be identified if we have used constitutive data
set as the negative data set. Among these 179 SREs, 34%
(60/179) SREs could be found in the 992 hexamers
selected from SpliceAid; whereas among the remaining
190 SREs, only 22% (42/190) can be found in the 992
hexamers. This indicates that more percentage of true
positive SREs can be lost if the non-discriminative
approach is employed.

Special SREs that can be both enhancer and silencer

Among 456 SREs we identified, two SREs are special
because they were identified as an enhancer in one tissue
but a silencer in another tissue. These two SREs are UGC
AUG and UCUAUC, whose z-score are shown in
Figure 2c.
UGCAUG was annotated as a downstream ISE��M

and downstream ISS�L�. Our annotation ISE��M
(muscle-specific ISE) of UGCAUG is consistent with the
computational result (14) and experimental observation

(37,38), as well as with the results of Wang et al. (1) and
Castle et al. (12). Our annotation ds’ ISS�L� is also con-
sistent with the result of Castle et al. (12), but Wang et al.
(1) did not predict UGCAUG to be an SRE in liver. To
the best of our knowledge, this putative role of down-
stream ISS in liver has not been reported in any experi-
mental results, although it was experimentally verified to
be an upstream ISS (47). Further experimental investiga-
tions worth being carried out to see if it is a liver-specific
ISS as Castle et al. and we predicted. If this is true, new
splicing factors binding to this hexamer may be identified,
given the fact that Fox-1 is not expressed in liver (47).

We did not identify UGCAUG to be an upstream ISE
in brain as previous computational work did (14,37). The
data of Wang et al. (1) also indicate that UGCAUG is an
ISE in brain, but enrichment in brain is not so significant
as in heart and muscle. The data of Castle et al. (12) are
more complicated, because UGCAUG is over-represented
in the downstream intronic region of both up- and
down-regulated ASEs in several brain cells including
medulla oblongata, thalamus and in fetal brain, but is
over-represented in the downstream intronic region
of only up-regulated ASEs in other brain cells including
cerebellum and hippocampus. Hence, if we use the
non-discriminative method, we would predict UGCAUG
to be both ISE and ISS in the same downstream region
and in the same type of cell, which is obviously a
conflictive result. To find out why our method using the
data of Mortazavi et al. (19) did not predict UGCAUG to
be an ISE in brain, we rechecked the data and found that
UGCAUG is moderately abundant in both the inclusion
and exclusion sets of brain. The z-score of our discrimin-
ate approach is lower than the critical value at the 0.03
significance level. Generally, for those sequences that are
abundant in both inclusion and exclusion sets, our dis-
criminative approach will not predict them to be an
SRE, but the non-discriminative will give a conflictive pre-
diction: such sequences are both an enhancer and a
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Figure 7. Probability density of P-values of the SREs with or without
experimental validation. SREs are computationally identified at a sig-
nificance level of 0.05.
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silencer. Given the different results in different studies and
the fact that UGCAUG is a binding target of Fox-1
protein family specifically expressed in brain (47,48),
more carefully designed experiment is needed to investi-
gate the role of UGCAUG in brain, especially in different
brain cell types.

Another hexamer UCUAUC was predicted as a down-
stream ISS��M and a downstream ISE?L�. No corres-
ponding experimental result in mammals was found for
this hexamer, but it was found to be over-represented in
both flanking introns of ASE 16 of the unc-52 gene of
Caenorhabditis elegans. Using an unc-52 splicing reporter
trans-gene containing alternative exons 15 through 19,
it was reported that alternative splicing is regulated by
the hexamer UCUAUC in the intron downstream of
exon 16 (32). It was also reported that this hexamer was
bound by protein HRP-2 with high affinity (33) and was
concluded that UCUAUC could enhance the inclusion of
exon 16 in the muscle-expressed reporter trans-gene,
which seems inconsistent with our annotation ISS��M.
Since half of C. elegans introns are of <60 nt, which are
too short to be spliced in mammals, the role of UCUAUC
in mammals needs to be investigated by further experi-
mental and computational approaches.

DISCUSSION

Reads from RNA-Seq give information about how exons
are connected, which can be explored in the investigation
of AS. RNA-Seq also provides more accurate measure-
ment of expression levels of transcripts and their
isoforms across a very broad dynamic range than other
methods such as microarray (20). Capitalizing on these
two advantages of RNA-Seq, we identified ASEs from
the mouse RNA-Seq data set (19) and calculated the ex-
pression levels of isoforms of the genes containing the
selected ASEs. This enabled us to determine reliable
positive and negative data sets for SREs and then to
employ a powerful discriminative approach to identify
enhancers and silencers regulating alternative splicing.
We chose the RNA-Seq data for three mouse tissues
(19) rather than more comprehensive RNA-Seq data for
15 human tissues and cell lines (1) due to the following two
reasons. First, unlike the human RNA-Seq data (1), the
mouse RNA-Seq data (19) have not been explored to
predict any SREs. Second, as demonstrated in (19), the
RNA-Seq reads generated from the protocol using RNA
fragmentation provide more uniform coverage along the
transcripts than those generated from the protocol using
cDNA fragmentation (1), and thus, the mouse RNA-Seq
data can be used to calculate the expression level of each
isoform of each gene more accurately.

As shown in (16–18), a discriminative approach using
reliable positive and negative data can significantly
increase the power of detecting motifs that are over-
represented in the positive data set relative to the
negative data, without increasing the false positive rate.
However, most computational methods for identifying
SREs do not employ the discriminative approach. These

include the ones used to identify RESCUE-ESEs from
constitutively spliced exons (8) and tissue-specific SREs
from microarray data (12) as we discussed in ‘Intro-
duction’ section. Similar to the method used to identify
RESCUE-ESEs, intronic sequences flanking constitutively
spliced exons were used as background data to identify
brain-specific SREs (14). The putative ESEs and ESSs
(PESEs/PESSs) were identified by comparing the
frequencies of octamers in constitutively spliced non-
protein-coding exons with those in a negative control set
including the pseudo exons and 50 untranslated regions
of intronless gene (9). Although this negative set may
be more reliable than the one used in identifying
RESCUE-ESEs, it may not be as reliable as the negative
data in our method due to the following arguments.
Pseudo exons are good negative sequences for identifying
ESEs because they are never spliced. However, although
the ASEs in our exclusion set are also not spliced in a
tissue or under certain condition, they are spliced in
other tissue(s) or under other conditions. This is a
stronger indication that these ASEs in our exclusion set
may lack the ESEs that assist the splicing of ASEs in the
positive data. Similar arguments hold for other enhancers
or silencers. In the identification of ESS from pseudo
exons (10), constitutively spliced exons and their
flanking intronic regions were used as the negative data
set, which is again not as reliable as the ASEs and their
flanking intronic regions in our inclusion set because these
ASEs can also be skipped under different conditions.
Another advantage of our discriminative approach

is that it can identify both common and tissue-specific
SREs. This is an important feature because both
tissue-specific splicing factors and tissue-specific expres-
sion of constitutive splicing factors may play a role in
regulating alternative splicing. If we use constitutively
spliced exons as the negative data as used in
(8,10,14,46), we would not only lose detection power as
shown in the ‘Results’ section, but also miss those
common SREs present in constitutively splice exons. As
a side note, similar to the method used to identify PESE/
PESS (9), our method do not have problem of sequence
bias such as codon or CpG bias, since our positive and
negative data sets have similar sequence composition. If
a sequence is abundant in both inclusion and exclusion
sets, our discriminative approach generally will not
predict it as an SRE, but the non-discriminative
approach will likely predict it to be both an enhancer
and a silencer, which obviously is a conflictive and
confusing result. On the other hand, if an SRE is
abundant in both the data set from which we try to
identify the SRE and the background data set,
non-discriminative approach cannot identify such an
SRE, but our discriminative approach using negative
data set is very likely able to identify it.
To reduce the false positive rate without losing detec-

tion power, we used a validating process to determine the
cutoff P-value, which was chosen to be 0.03. Specifically,
we first used a cutoff P-value equal to 0.05. This gave 799
SREs, 200 of which could be found at least one match in
the 992 hexamers selected from SpliceAid (22) containing
experimentally identified SREs. We plotted the
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distribution of the P-values of these 200 SREs and of the
remaining 599 SREs, as shown in Figure 7. It is seen that
at a P< 0.03, the probability of experimentally validated
SREs is generally higher than the probability of SREs
without experimental validation, and that this trend is
reversed at P> 0.03. Therefore, we selected 0.03 to be
the cutoff P-value.
About 26% (118/456) of 456 SREs we identified can be

found in database with experimentally validated SREs.
This percentage is slightly higher than that for the SREs
identified by Wang et al. (1) and Castle et al. (12) from
human tissues. About 48% (221/456) of our SREs are
tissue-specific, which shows that tissue-specific SREs
play an important role in regulating alternative splicing
as observed early. Although only 10% (45/456) SREs
are common to all three tissues in this study, it does not
imply that common SREs are less important, because 45%
(207/456) SREs were common to two tissues but unsure
to the other tissue. If more data are available, we
may identify these SREs as common or tissue-specific
SREs. Only 18% (20/108) of our ESEs are included in
RESCUE-ESE identified from constitutively spliced
exons, and only 14% (15/108) of our ESEs are annotated
as common to three tissues. This shows that much more
tissue-specific ESEs are involved in regulating
tissue-specific splicing than constitutive ESEs.
It worths some discussions on three SREs: CUCUCU

(us’ ISS�LM), UGCAUG (ds’ ISE–M and ds’ ISS�L�) and
UCUAUC (ds’ ISS��M and ds’ ISE?L�). The first two
have been repeatedly identified as an SRE in both experi-
mental and computational approaches (12,34–39), but
our study reveals some new information. Specifically,
our position analysis showed that CUCUCU appears at
15–30 nt upstream of the ASE skipped in liver and muscle
but not brain with much higher frequency than any
other locations. Since these locations are in the poly-
pyrimidine tract, CUCUCU most likely functions in the
polypyrimidine tract as a tissue-specific silencer. While
previous results showed that an SRE can be an enhancer
or silencer depending on its location. For example, UGCA
UG can be a ds’ ISE or a us’ ISS. Our analysis showed
that UGCAUG and UCUAUC can function as an
enhancer in one tissue but a silencer in another tissue
from the same intronic region downstream of the ASE,
which calls further investigation about the mechanism
that these two SREs function.
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