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ABSTRACT

Modern experimental technology enables the iden-
tification of the sensory proteins that interact
with the cells’ environment or various pathogens.
Expression and knockdown studies can determine
the downstream effects of these interactions.
However, when attempting to reconstruct the signal-
ing networks and pathways between these sources
and targets, one faces a substantial challenge.
Although pathways are directed, high-throughput
protein interaction data are undirected. In order to
utilize the available data, we need methods that can
orient protein interaction edges and discover high-
confidence pathways that explain the observed
experimental outcomes. We formalize the orienta-
tion problem in weighted protein interaction graphs
as an optimization problem and present three
approximation algorithms based on either weighted
Boolean satisfiability solvers or probabilistic assign-
ments. We use these algorithms to identify pathways
in yeast. Our approach recovers twice as many
known signaling cascades as a recent unoriented
signaling pathway prediction technique and over
13 times as many as an existing network orientation
algorithm. The discovered paths match several
known signaling pathways and suggest new mech-
anisms that are not currently present in signaling
databases. For some pathways, including the phero-
mone signaling pathway and the high-osmolarity
glycerol pathway, our method suggests inter-
esting and novel components that extend current
annotations.

INTRODUCTION

Reconstructing interaction networks in the cell is one of
the great challenges of computational biology. Work in
this area using high-throughput data sets focused on the

reconstruction of regulatory networks (1–3), the analysis
of metabolic networks (4,5) and the discovery of signal-
ing networks and pathways (6,7). However, while data
about the directionality of an interaction are available
when using high-throughput data to reconstruct and
analyze regulatory and metabolic networks, this
information is often missing for signaling networks. For
example, ChIP-chip and ChIP-Seq studies (8,9) identify
which transcription factors regulate genes, studies of
microRNAs often look for targets (10) and motif studies
are performed upstream of genes (11). Similarly, metabol-
ic networks are often modeled using knowledge regarding
the order of genes and enzymes (12). In contrast, even
though signaling networks are directed, the available
protein–protein interaction (PPI) data are almost always
undirected (13,14). Thus, it is challenging to reconstruct
these networks since it requires not only the right set of
proteins and interactions but also the directionality for
each edge when assembling pathways.
Recent proteomic studies have examined interactions

between cellular proteins and the molecules and agents
that affect them [e.g. host–pathogen interactions (15)].
In many cases, we can also determine the proteins that
are impacted downstream of these initial interactions,
either through expression or through knockdown studies
(16–18). Thus, an important challenge is to determine
the signaling networks or pathways that are used to
transmit information from known sources to known
targets. To reconstruct these networks we need to infer
an orientation for undirected PPI networks in order
to identify directed paths between sources and targets.
This is a difficult problem because there are many paths
that can link two proteins in the interaction network.
Fortunately, we can rely on a few established assump-
tions to simplify the problem. First, it is likely that
biological responses are controlled by reasonably short
signaling cascades, so we can only search for length-
bounded paths. Pathways in signaling databases such
as KEGG (19) and the Science Signaling Database of Cell
Signaling (http://stke.sciencemag.org/cm/) on average
contain only five edges between a target and its closest
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source (Supplementary Methods), and previous signaling
pathway prediction methods have focused on pathway
segments of only 3–4 edges (7). Second, we have varying
degrees of confidence in the available interaction data
[e.g. small-scale versus high-throughput experiments (20)]
and, as we show, focusing on the more confident edges
leads to better pathways. Finally, in many cases there are
overlapping parallel pathways linking sources and targets
(21–23) so selecting an orientation that generates multiple
possible pathways may produce better reconstruction
results.
Although much attention has been given to the signal-

ing pathway prediction problem, nearly all previous
work does not consider the orientation of the paths and
simply selects subsets of edges, yielding undirected predic-
tions. One of the earliest undirected pathway prediction
algorithms was NetSearch (24). NetSearch enumerated
linear pathways and ranked all putative pathways by clus-
tering the gene expression profiles of pathway members
and generating hypergeometric distribution-based scores.
Since linear paths do not fully capture the complexity
of signaling networks, Scott et al. (6) used a color-coding
technique to search for paths and higher order structures
(trees and parallel paths) in a weighted protein interaction
graph. Lu et al. (25) presented a randomized divide-
and-conquer algorithm that, like Scott et al., supported
complex non-linear pathways structures. PathFinder (7)
integrated multiple data sources to extract association
rules describing protein function in known signaling
pathways and then used these rules, along with additional
expression data, to detect new pathways of interest in
the network. Whereas many previous methods searched
for source–target pathways individually, Zhao et al. (26)
formulated a linear program to identify a single global
signaling subnetwork that satisfies various constraints.
We refer to their technique as the unoriented edge selec-
tion algorithm. Recognizing the trade-offs between local
and global search approaches, Yosef et al. (27) presented
an algorithm that combined the two objectives and
could be tuned to give preference to one or the other
on a particular run. While all of these methods led to
useful findings, none of them generates directed
pathways. As we show in the ‘Results’ section, by
ignoring the edge orientations these methods lose import-
ant information that improves pathway reconstruction
and thus contain far fewer known signaling pathways
in their predictions.
Relatively few methods have been developed to try

to explicitly address the edge orientation problem. In
(28), the authors defined the maximum tree orientation
(MTO) problem, which focused on reachability. They con-
sidered a source–target pair to be satisfied as long as
any single path of arbitrary length connected them. As a
result, cycles in the PPI network could be contracted and
the problem was equivalent to orienting a tree. While
this variant of the edge orientation problem can be
approximated well, such a structure cannot give preference
to short paths or high-confidence edges and also ignores
redundant pathways. Liu et al. (29) predicted directed
signaling pathways in multiple species. However, because
their method relies on specific protein domain interactions,

it does not scale to the entire proteome. Indeed, as the
authors noted, coverage, the fraction of interactions in
the test set for which predictions could be made, was
<50% at the thresholds they used. Probabilistic graphical
models have also been used to orient edges when trying to
explain knockout effects via a physical interaction network
consisting of PPI and protein–DNA interactions (30). The
Physical Network Models algorithm constructs a factor
graph and applies belief propagation to infer both PPI dir-
ectionality and regulatory effect (inhibition or activation).
While this approach works well for relatively small
networks and short pathways, as we show in the ‘Results’
section, it does not scale well. SPINE (31) adapts the
Physical Network Models formulation but expresses the
problem as an integer program. However, SPINE only
focuses on identifying activation and repression regulatory
effects of either proteins or edges and does not attempt to
orient the network. Conversely, our goal is to determine
directionality in PPI signaling networks where the
positive and negative regulatory effects upon genes are
not the primary concern.

In this article, we formalize the orientation problem for
length-bounded pathways in weighted interaction
networks and show that the problem is non-deterministic
polynomial-time hard (NP-hard). We next present three
algorithms for this problem and their approximation guar-
antees. Two of the algorithms use methods developed to
solve weighted Boolean satisfiability (SAT) problems and
the third is based on probabilistic selections. We applied
all three algorithms to PPI networks using simulated and
biologically derived sources and targets. As we show using
the simulated sources and targets, the algorithms perform
very well and in practice achieve very good solutions in
reasonable time. Using real signaling networks, we show
that our algorithms can recover many known pathways
and improve upon prior methods for pathway discovery.
We also analyzed pathways discovered by the algorithms
that do not appear in current signaling databases. In many
cases, these match known knowledge about the direction-
ality of the interactions within pathways. Other predic-
tions raise interesting biological hypotheses.

We note that while we focus on orienting undirected
protein interaction networks, the algorithms we present
are applicable to other biological network orientation
problems as well and can also be used with mixed
graphs, which consist of undirected PPI and directed inter-
actions (e.g. protein–DNA binding).

MATERIALS AND METHODS

Our goal is to orient edges in the protein interaction
network in order to extract the high-confidence signaling
pathways activated as part of a response program. Below,
we formally define the problem, prove that it is NP hard
and then discuss several methods for approximating the
optimal solution for this problem. Supplementary data
and source code for the methods presented in the article
are available from the supplementary web site: http://
www.sb.cs.cmu.edu/OrientEdges.

e22 Nucleic Acids Research, 2011, Vol. 39, No. 4 PAGE 2 OF 12

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/39/4/e22/1006455 by guest on 23 April 2024



Formulating the edge orientation optimization problem

We assume we are given a weighted undirected graph
G ¼ ðV,EÞ which represents our current knowledge of
protein interactions. We are also given a maximum path
length k and source–target pairs of the form < si,ti > such
that si 2 S � V and ti 2 T � V. Our goal is to orient edges
e ¼ ðu,vÞ 2 E from u to v or from v to u such that the
weight of all satisfied paths between sources and targets
with length at most k is maximized. Each simple path
takes the form p ¼ ðv1,v2Þ,ðv2,v3Þ,:::,ðvl,vl+1Þ where v1 ¼ si,
vl+1 ¼ ti and l � k for some pair < si,ti >. A path is
satisfied in a given network orientation if and only if
for every edge ðvj,vj+1Þ along the path the edge is
oriented from vj to vj+1 in the network. Multiple paths
may exist between a single source–target pair as long as
paths with the same source and target have at least one
disjoint edge (as mentioned above, parallel pathways are
very common). After orientation there may be directed
source–target paths in the graph that contain more than
k edges, but they are not incorporated into the objective
function.

All vertices and edges in the graph have real-valued
weights denoted wðvÞ and wðeÞ, respectively. While all
vertices (proteins) have the same weight in our current
implementation, allowing for varying protein weights is
a useful feature in cases where some proteins are known
to be involved in the response. The edge weights are
assigned based on the confidence in each protein inter-
action, which in our implementation depends on the type
of experimental support provided for that edge. Weights
represent our confidence in the presence of the edge or
in the involvement of a gene in the response, and the
weight of an entire path p is wðpÞ ¼

Q
v2p wðvÞ

�
Q

e2p wðeÞ.
Since we use weights in the range [0,1] to represent edge
confidence, this definition of path weight causes long
paths to have lower weights than short paths. Thus, the
objective in the Maximum Edge Orientation (MEO)
problem is to maximize the function:
X

p2P

ISðpÞ
�wðpÞ

where P is the set of all unique paths between sources and
targets with length at most k and ISðpÞ is an indicator
function that has the value 1 if path p is satisfied.

Although we currently assume that edge weights are
symmetric, one simple yet powerful generalization is to
allow asymmetric edge weights when there is a prior
belief that one orientation of an edge is more likely than
the other. Incorporating such information involves using
the appropriate direction-specific weight for each edge
when calculating w(p), but does not require any adjust-
ments to the proposed MEO approximation algorithms.

MEO is NP hard

Similar to Medvedovsky et al. (28), we sketch a proof that
MEO is NP hard for any k � 2 by reduction from
Maximum Directed Cut (MAX-DI-CUT) (32). See the
Supplementary Methods for an extended proof. Given a
directed graph G ¼ ðV,EÞ, the objective of MAX-DI-CUT

is to partition the vertices V into sets A and B, where
A � V and B ¼ V� A, such that the number of directed
edges that begin in A and end in B is maximized. To
reduce a MAX-DI-CUT instance G ¼ ðV,EÞ to MEO,
we add a new node C and construct an undirected graph
H ¼ ðV0,E0Þ, where V0 ¼ V [ fCg and E0 ¼ ðv0,CÞ for all
v0 2 V (Figure 1). All edges and vertices in H are given a
weight of 1 so that for all p, wðpÞ ¼ 1. For every directed
edge (u, v) in the MAX-DI-CUT instance, we create a
source–target pair < u,v > in the MEO instance.
Observe that there is a one-to-one mapping between

an orientation O of H and a cut A � V of G. If an edge
ðv0,CÞ in H is oriented toward C, then place the corres-
ponding vertex v in the set A. For all edges ðv0,CÞ oriented
away from C, include v in the set B. Thus, for any satisfied
path ðv01,CÞ,ðC,v02Þ in H, the directed edge ðv1,v2Þ will be
across the cut in G (Figure 2). Since all paths have a weight
of 1, the weight of all satisfied paths, which is the property
MEO maximizes, is equal to the number of edges across
the cut in G.
Note that the above reduction proves that the problem

is hard even for k=2. MAX-DI-CUT cannot be
approximated within a factor of 12/13 (33), which
implies MEO is inapproximable within 12/13 for k � 2.
However, our problem is even harder for larger (yet still
reasonable) values of k. Consequently, we can reduce
MAX-3-SAT, which is harder to approximate (33), to
MEO with k � 5 yielding the stronger inapproximability
bound of 7/8 for this range of k (proof omitted).
Since MEO is NP hard even for small k, we describe

approximation algorithms for orienting the graph with
varying theoretical guarantees and running times. For an
instance m of a maximization optimization problem, if
the optimal value of the objective function is OPT(m)
and an approximation algorithm guarantees a value of

Figure 2. Mapping an orientation of the MEO instance back to a
directed cut. An orientation in the MEO problem uniquely defines a
cut in the MAX-DI-CUT instance. The number of satisfied paths in
the MEO instance is identical to the number of directed edges from
A to B.

Figure 1. An example of the MAX-DI-CUT to MEO transformation.
The MEO graph has the same vertices as the MAX-DI-CUT graph
plus an additional center vertex, to which all other vertices are
connected. The MAX-DI-CUT edges are used to define the MEO
source–target pairs.
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at least APX(m), we say the algorithm guarantees an
r-approximation where

r ¼
APXðmÞ

OPTðmÞ

Random orientation

The simplest approximation algorithm randomly assigns
an orientation to each edge in the graph. For a particular
path, let the orientation an edge takes when the path is
satisfied be the optimal orientation for that edge with
respect to the path. After a random orientation, each
edge in a particular path will be optimally oriented with
probability 1/2. Since the path contains at most k edges
and all edges are oriented independently, the probability
that a given path is satisfied is:

P ISðpÞ ¼ 1ð Þ ¼
Y

e2p

P IOðe, pÞ ¼ 1ð Þ ¼
Y

e2p

1
2 �

1
2

� �k

where IOðe, pÞ is an indicator function that takes value 1 if
the edge e is optimally oriented for path p. Thus, the
expected value for a path is E½p� � 1

2

� �k�wðpÞ and by lin-
earity of expectation the random orientation yields a
1
2k
-approximation. In practice, we deterministically fix the

orientation of any edges that are used in the same direc-
tion by all paths that contain them and only randomly
orient the remaining edges. This can only improve the
likelihood that a particular path is satisfied, thus the
approximation guarantee is not affected.

MIN-k-SAT and MAX-k-CSP approximation algorithms

Although the MEO problem is a maximization problem,
an MEO instance can be transformed to a weighted
MIN-k-SAT (34,35) instance. Weighted MIN-k-SAT is
an optimization version of the traditional SAT problem
in which weighted disjunctive clauses with at most
k literals are given and the objective is to find the assign-
ment to all variables that minimizes the sum of the weights
of the satisfied clauses. In a similar manner, MEO can
be reduced to MAX-k-CSP (constraint satisfaction
problem), which maximizes conjunctive clauses instead
of minimizing disjunctive clauses. MAX-k-CSP is more
difficult to approximate than MIN-k-SAT, but the
technique by Charikar et al. (36) can be used to obtain a
O k

2k

� �
-approximation ratio for MEO, improving upon the

1
2k
-approximation guarantee obtained via random orienta-

tion. See the Supplementary Methods and Figures S1–S3
for further theoretical details, pseudocode, and a discus-
sion of how we approximate the MIN-k-SAT and
MAX-k-CSP instances in practice.

Improving approximations with local search

The solution returned by any of the algorithms described
above can typically be improved by using it as the starting
point for a local search instead of taking it directly as
the final orientation. Specifically, local search in the
MEO problem involves iteratively finding the edge that
will yield the greatest improvement in the objective
function if its orientation is changed and flipping that

edge’s direction. Complete pseudocode can be found in
Supplementary Figure S4.

In practice, we have found that the local search proced-
ure terminates quickly, but if worst case runtime is a
concern, the number of iterations can be bounded by
requiring that each edge flip improves the score by some
fixed percentage of the score. While helpful in practice,
local search does not improve the theoretical guarantees
of any of the algorithms.

PPI databases and edge weight assignment

The unweighted PPI network consisted of the union of all
yeast interactions in the BioGRID (37), IntAct (38) and
MINT (39) databases. In the context of MEO, every edge
and vertex in an unweighted network is given a default
weight of 1 so that all paths have equal weight.

The first weighted network was constructed by taking
the intersection of edges in the three PPI databases. Since
the reliability of a reported PPI has been shown to
increase with the number of observations of that inter-
action (40), we assigned a weight of 0.75 to interactions
appearing in exactly two databases and a weight of 0.95 to
edges in all three databases. Edges only present in a single
database were discarded.

The second weighting scheme was based on the type of
experiment(s) used to detect the interactions. These
weights were calculated only for the BioGRID edges,
because the calculation is dependent on the experimental
types reported by BioGRID. Each PPI was assigned a
probability that the reported pair of proteins truly phys-
ically interact, which was used as the weight of the edge
between the two proteins in the MEO graph. As in the
other weighting scheme, we place more trust in inter-
actions that have been observed more frequently.
Therefore, the probabilities were computed using both
the confidence in the experimental systems used to detect
the interaction and the number of separate publications
that report the interaction. For each interaction between
proteins P1 and P2, the probability their interaction is a
true positive is given by the formula:

P interact P1, P2ð Þð Þ ¼ 1�
Y

i2IP1,P2

1� cðiÞð Þ

where i is a member of the set IP1,P2, all of the distinct
(based on experiment type and PubMed identifier) in-
stances of that interaction in the PPI data set, and c(i) is
the confidence in the class of experiments to which i
belongs. The confidence scores for the 15 types of experi-
ments presently considered can be found in
Supplementary Table S1, and Supplementary Table S4
compares the sizes of the different networks.

Selecting gold standard sources and targets

After identifying several signaling pathways in KEGG
(19) and the Science Signaling Database of Cell
Signaling (http://stke.sciencemag.org/cm/), we manually
inspected the pathway diagrams to choose source and
target proteins. Only proteins without parent nodes in
the diagram were chosen as sources. Any protein that
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was downstream of the sources was allowed to be a target,
although preference was given to those proteins without
children in the graph. We ensured that the set of sources
and set of targets were disjoint. The Supplementary
Methods describe the pathways used in the gold
standard and Supplementary Table S3 provides a list of
the sources and targets used in our evaluations.

Gold standard pathway evaluation

The results for random orientation with local search in
Table 2 are based upon 20 random restarts. The MIN-
SAT results are based on 20 initial orientations given by
the MIN-SAT approximation algorithm. The MAX-CSP
results are based on a single execution of its deterministic
solver. MTO results are averaged over 20 runs, and
random orientation results without local search (referred
to as the oriented baseline) are averaged over 1000 runs.
The unoriented edge selection algorithm is also determin-
istic so the results are based on a single execution. To
evaluate its undirected predictions, every source–target
path containing exactly six proteins was treated as a
satisfied path.

Path ranking metrics

For our primary evaluation, we ranked all paths returned
by the orientation algorithms by various criteria (Table 2)
and calculated how many of the top 100 paths with five
edges (containing exactly six proteins) are at least partially
present in a gold standard pathway. Partially present
means that at least four of the six proteins are found con-
secutively in both the gold standard and a satisfied path
returned by the algorithm (see Supplementary Results for
other path-matching criteria). Ranking paths by path
weight is the most natural method, but we also explored
ranking paths by the maximum, average or minimum
value of different criteria that can be calculated for each
edge or vertex on the path. The first such alterative
ranking metric was the edge weight. The next was
referred to as edge use, where the number of uses for a
single edge is the number of times that edge is a member of
satisfied paths. Although this metric does not directly in-
corporate the edge or path weights, they still influence the
top-ranked paths when sorting by edge use because edge
use is dependent on the network orientation, which is de-
pendent on the path weights. The final ranking criterion
was the vertex degree (the sum of the in and out degrees).
Path weight was used to break ties when ranking by other
metrics.

RESULTS

Experimental setup

We applied our orientation algorithms to random and real
source–target pairs in protein interaction networks, where
the real pairs were derived from known signaling
pathways as described in the ‘Materials and Methods’
section. Since it is often not clear which sources are affect-
ing which targets, in all tests we took the set of source–

target pairs to be the Cartesian product of the set of
sources and set of targets
Using real data, we compared our algorithms with two

other methods for discovering pathways. The first is the
reachability-focused MTO algorithm (28). The second is
the undirected edge selection algorithm by Zhao et al. (26).
Zhao et al. directly evaluated their technique against other
notable undirected signaling pathway prediction algo-
rithms (6,7,24) and showed that it compares favorably.
Thus, we consider it to be representative of the general
class of undirected methods. We selected these two
methods for comparison because like MEO, they both
can be expressed as integer programming problems and
search for paths in an interaction network to explain
source–target pairs. Although each of these algorithms
makes different assumptions about the properties the dis-
covered pathways should have, to our knowledge no
existing work incorporates the combination of path con-
straints and objectives that our formulation does.
We also attempted to compare our methods with the

Physical Network Models algorithm (30), however this
algorithm was unable to scale to our test cases. After
running for 10 days on a dual core 2.66GHz machine
with 2GB of RAM, the algorithm was not close to ter-
mination on a test case involving 16 sources, 16 targets
and paths of 5 edges in the yeast PPI network. In addition,
when we ran a modified version of the algorithm that
terminated after a fixed amount of time, it did not
return any predicted pathways we could evaluate (see
the Supplementary Methods for details).

Obtaining a protein interaction network for yeast

Our methods are applicable to any PPI data set. In
addition, unlike some previous algorithms, they can
utilize edge weight information. As we discussed in the
‘Materials and Methods’ section, weights can be derived
from the source provided as evidence for the interaction
(e.g. which type of experiment was used to identify the
interaction) or by integrating multiple PPI databases
(e.g. increasing the weight for those interactions that are
supported by multiple databases). To test whether
weighted edges help and if so which type of weight
provides the most benefit, we downloaded all protein
interactions for yeast from the BioGRID (37), IntAct
(38) and MINT (39) PPI databases (Supplementary
Table S4). We compared three types of networks: un-
weighted networks, a weighted network based on the
intersection of these databases and a weighted network
in which the weight depends on the type of experiment(s)
that identified each edge as reported in BioGRID.
We found that both the presence of edge weights and

the manner in which they are derived greatly impact the
quality of the predicted pathways. In both weighted
networks, our orientation algorithm recovered known sig-
naling pathways even though none of its highest confi-
dence predictions in the corresponding unweighted
networks aligned with any gold standard paths
(Supplementary Table S5). In addition, experiment
type-based weights led to many more valid predictions
than weights derived from database intersection so we
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focused on that weighting scheme for the remainder of our
evaluations. Supplementary Table S6 shows that this phe-
nomenon is not algorithm dependent—all algorithms we
examined benefit from the weighted network.

Algorithm runtimes

Scalability is an important issue for methods analyzing
high-throughput data sets especially because current
data are incomplete and networks for other organisms
may be larger than those for yeast. We thus used the
yeast network to examine the runtimes of our orientation
algorithms and MTO for various combinations of
maximum path length and source–target pairs. Runtimes
for our algorithms include the time to enumerate paths
and run local search, which composes nearly the entire
runtime of our random orientation algorithm. Table 1
presents the runtimes of the algorithms for various com-
binations of sources, targets and maximum path length (k)
using a dual core 2.66GHz machine with 2 GB of RAM.
Times for MTO and the random orientation algorithm are
averaged over 50 runs per instance.
For smaller instances, all algorithms are very fast,

terminating in less than a second. As expected, the
randomized algorithm scales very well even for paths
with six proteins (k=5) making it practical for large
networks with many sources and targets, and even the
MIN-SAT-based algorithm executes in less than an hour
on the largest instance. MTO’s runtime is primarily
affected by the network size and not the number of
sources and targets, and it is completely independent of k.
The number of possible paths in the network grows by

roughly one order of magnitude for every additional node
allowed in a path. Thus, we did not measure the runtimes
for cases where there are seven or more nodes in the
pathway (k � 6). See Supplementary Table S7 for details.

Algorithms outperform approximation guarantees on
simulated source–target pairs

To evaluate our orientation algorithms from a theoretical
perspective, we examined the objective function values
achieved in practice with respect to the approximation
guarantees by using the real interaction network and
simulated source–target pairs. We set the maximum path
length to 5 (allowing for six proteins in each pathway),
which is longer than the 3–4 edges preferred by previous
pathway prediction algorithms (7,31). We randomly
selected five unique sources and 10 unique, distinct

targets for each test case leading to 50 source–target
pairs per instance. We computed an upper bound on the
optimal score for each instance (Supplementary Methods).
This upper bound can be used to obtain a lower bound on
the performance of the algorithms since the ratio of their
objective value achieved to the upper bound could be even
larger if the actual optimal score replaced the upper bound
in the ratio. Recall that larger ratios correspond to better
approximations.

Figure 3 shows the fraction of the upper bound
achieved by the algorithms on instances with simulated
sources and targets (MTO and the unoriented edge selec-
tion algorithm do not use the MEO objective function and
are therefore not included in this evaluation). Note that
even for a fixed number of sources and targets, the number
of possible paths in the network varies greatly due to
network topology.

We observe that for those instances that yield fewer
paths, the best approximation algorithm either achieves
the optimal value or finds an orientation with value
>99% of the upper bound. Even in the worst case we
encountered, the best ratio achieved is >0.7, which is far
better than the k

2k
¼ 5

32 � 0:16 best known theoretical guar-
antee of the MAX-k-CSP algorithm.

The benefit of local search varies greatly by algorithm
and by the number of paths. As expected, the random
orientations without local search perform much worse
than the orientations after search. For the smaller in-
stances and one larger instance with roughly 50 000
paths, the MIN-SAT algorithm obtains an excellent orien-
tation without search. However, in the worst instance
local search improves the MIN-SAT score nearly 2-fold.
Of all three algorithms, MAX-CSP is the top performer
without local search, and search does little to improve its
orientations. This is not surprising because its underlying
solver already uses an internal search-based strategy.

Interestingly, all three algorithms achieve quite similar
ratios after local search across all instances we tested, to
the extent that their respective points on the plot often-
times overlap. This suggests that in practice the local
search itself is more important when finding an optimal
orientation than the actual algorithm used to obtain the
starting point for the local search.

Evaluating algorithms using gold standard pathways

To confirm that the orientations produced by our
algorithms not only achieve good approximation ratios
but also produce biologically meaningful results, we
compared the oriented networks with all yeast signaling
pathways from KEGG and the Science Signaling
Database of Cell Signaling. In Supplementary Methods,
we describe the individual pathways in our gold standard
set, the overlap between the gold standard and PPI network
(Supplementary Table S2) and the sources and targets we
selected (Supplementary Table S3). The gold standard
network is small compared with the complete interaction
network, containing 188 proteins and 286 interactions.

We considered using biochemical and metabolic
pathways from Saccharomyces Genome Database (SGD)
(http://www.yeastgenome.org/biocyc/) as well. However,

Table 1. Algorithm runtimes in seconds

Sources Targets k MTO Random MIN-SAT MAX-CSP

4 4 4 2.0 0.1 0.1 0.3
8 8 4 2.0 0.2 0.5 0.4
16 16 4 2.0 0.4 11.0 2.3
4 4 5 2.0 0.8 3.7 3.8
8 8 5 2.0 1.8 65.7 10 802.7
16 16 5 2.0 16.2 2742.5 10 806.7

Local search was included for all three of our algorithms. See
Supplementary Table S3 for the sources and targets used.
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we found that these data are not appropriate for evaluating
our pathway predictions because<2% of consecutive pairs
of proteins in these metabolic pathways interact in the
high-confidence BioGRID PPI network. Consequently,
even an optimal orientation of the network cannot
recover the vast majority of the SGD pathways.

Since the oriented networks can contain thousands of
paths connecting the source–target pairs (Supplementary
Table S7), we needed a method for identifying which paths
are most likely to be biologically meaningful. We tested
several such methods including path weight; min, max and
average edge weight; min, max and average edge usage;
and min, max and average node degree. See ‘Materials

and Methods’ section for a description of each ranking
method. Table 2 summarizes the results of this evaluation.
Forty percent of the top-ranked paths discovered by the
local search algorithm (following random orientation) are
partially present in the gold standard when sorting by
minimum edge use. Note that since the pathway databases
are incomplete, the number of biologically valid pathways
discovered is even larger (see ‘Discussion’ section).
We found that path weight, average and minimum edge

weight and minimum edge use are useful criteria for
ranking pathways for most algorithms whereas vertex
degree is a poor ranking criterion. Of the three edge
use-based metrics, the minimum edge use is consistently

Figure 3. Fraction of the objective function upper bound achieved on instances with simulated sources and targets. After local search, all approximation
algorithms perform much better than the MAX-k-CSP theoretical guarantee on instances with simulated source–target pairs and find orientations
whose objective function values are virtually indistinguishable. The number of undirected paths includes all paths from a source to a target
before the network is oriented. The y-axis plots the ratio achieved by each algorithm, which is the score of the orientation returned by the
algorithm divided by the upper bound on the optimal objective function value. For each instance, there are six points (one for each algorithm
with and without local search) that have the same x-coordinate, the number of undirected paths, and different y-coordinates, the ratios achieved.
Instances have been ordered along the x-axis by the number of distinct source–target paths in the network before orientation, which is a coarse
indication of the difficulty of the instance.

Table 2. Number of top-ranked predicted paths that correspond to known signaling pathways

Algorithm Path
weight

Max. edge
weight

Avg. edge
weight

Min. edge
weight

Max.
edge use

Avg.
edge use

Min.
edge use

Max.
degree

Avg.
degree

Min.
degree

Random+search 37 11 36 34 0 0 40 10 0 0
MIN-SAT 2 0 2 1 0 0 0 1 0 0
MIN-SAT+search 33 9 32 28 0 0 40 10 0 0
MAX-CSP 14 7 14 16 0 0 16 3 0 0
MAX-CSP+search 7 5 6 7 0 0 16 3 0 0
MTO 3.2 3.2 3.2 3.2 3.0 3.0 3.0 3.0 2.8 3.2

Unoriented edge selection 20 20 20 20 20 20 20 20 20 20

Oriented baseline 9.5 4.3 9.8 7.5 0.4 0.2 3.2 4.6 0 0

For each of the algorithms, all satisfied paths with exactly five edges (six proteins) were ranked by various criteria. The table shows the number of the
top 100 ranked paths that partially matched gold standard pathways. Bold text denotes the highest scoring ranking metric(s) for each algorithm.
Sixteen sources and 16 targets derived from the gold standard signaling pathways were used (Supplementary Table S3). Supplementary Figures S5–S8
show receiver operating characteristic curves comparing random+search, MTO and unoriented edge selection in greater detail. Supplementary
Tables S8 and S9 contain additional results for smaller sets of sources and targets.
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the most informative. This demonstrates that predicted
pathways that contain only edges that are critical to a
large number of other satisfied paths correspond to the
gold standard better than pathways that contain some
edges that belong to many other paths and some edges
that are isolated. The average and minimum vertex
degree criteria yield top-ranked paths that generally do
not match known signaling pathways because they
consist only of paths that contain the highest degree
protein, Hek2, which is not known to be involved in our
gold standard signaling pathways.
The finding that three of the four most informative

ranking metrics are dependent on the edge weights
provides further evidence that our edge weight assign-
ments play an important role in identifying signaling
paths. As seen in Supplementary Table S6, when the PPI
network is unweighted it is not possible to sort paths using
these criteria. Almost all of the remaining criteria are
unable to rank predicted paths as well as the weight-based
metrics, thus edge weights are crucial for selecting a
high-confidence subset of paths from all predictions.

Orientation improves pathway identification

Surprisingly, although all three algorithms achieved
similar fractions of the upper bound on simulated in-
stances, the fastest method we presented, random orienta-
tion followed by local search, is able to recover a far
greater number of gold standard pathways in its top-
ranked paths than the CSP-based algorithm for all
criteria used and performs as good as or better than
MIN-SAT with search in all cases. Therefore, even
though the MIN-SAT and MAX-CSP algorithms are
interesting from a theoretical perspective, there is little
reason to prefer them in practice over the random orien-
tation with local search, which is much faster and can
handle larger values of k. The benefits of local search
are highlighted by the MIN-SAT algorithm, which
performs drastically better when local search is applied.
Unlike our algorithms, MTO and unoriented edge selec-
tion do not produce more biologically meaningful results
after local search (Supplementary Table S10).
On average MTO finds only three pathways that par-

tially match the gold standard no matter what ranking
criteria is used. This reflects the different objective of
MTO. Since it attempts to connect source–target pairs
with paths of arbitrary length, very few of the resulting
paths are reasonably short. In fact, in many runs we found
that the MTO-oriented network did not even contain 100
source–target paths with exactly six proteins, whereas our
algorithms find thousands of such paths. For the
minimum edge use ranking criteria, our random orienta-
tion with search discovers 13 times as many known
pathways as MTO.
Our evaluation also highlights the weaknesses of the

undirected edge selection algorithm, which can only
identify 20 paths in the gold standard regardless of the
ranking criteria used. This is only half of what our
random orientation with search discovers when ranking
by minimum edge use and demonstrates that crucial
network edges can be overlooked when subnetworks are

selected without regard to edge orientation. In fact, the
unoriented edge selection method discarded so many of
these relevant edges that it found less than 100 source–
target paths containing at most six proteins, which is why
its evaluation was not affected by the ranking criteria
used. These results strongly indicate that the unique
edge orientation constraint utilized by our algorithms
helps improve the quality of the pathways these methods
recover.

As a control, we also calculated how many gold
standard pathways could be recovered by random orien-
tations without local search, which we refer to as ‘Oriented
baseline’ in Table 2. We found that on average <10% of
the top-ranked pathways were present in a gold standard
pathway for any of the ranking criteria, which is much
lower than the results when random orientations are
followed by local search.

DISCUSSION

Modern experimental techniques provide information
about proteins that directly interact with environmental
factors and about the downstream effects of these inter-
actions. In this article, we presented algorithms for recon-
structing the pathways activated during such responses.
Such pathways are important for understanding how
signals are transmitted in the cell and often lie upstream
of the regulatory networks that are activated in these
responses.

These pathways primarily consist of interacting proteins
so a natural way of searching for them is to use large-scale
protein interaction databases. However, this is challenging
for several reasons. First, protein interaction data are
noisy. In addition, there are often several paths that can
link sources and targets. Finally, the protein interaction
data are undirected, whereas pathways are typically a
chain of directed events.

To solve these problems we presented several algo-
rithms for orienting protein interaction edges. Our algo-
rithms rely on a number of reasonable biological
assumptions including limiting the path length, using the
confidence in the interaction edges and allowing for
parallel pathways between sources and targets. The algo-
rithms perform very well in practice, and notably the
simplest algorithm consistently achieves better orienta-
tions than the more sophisticated and time-consuming
methods. As we showed using known pathways, our
orientation algorithms substantially improve upon
previous methods for discovering pathways in protein
interaction data sets. Furthermore, the preference for
multiple parallel pathways implicit in our objective
function was shown to be beneficial in our evaluation.

Analyzing pathways identified by our methods

Given the success of the methods in recovering known
pathways, we asked whether the novel pathways that
ranked highly according to our criteria may also be
correct and represent information that is missing from
current databases. We divided the pathways predicted by
our random orientation with local search algorithm into
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three groups and analyzed the top 20 pathways in
each group using the path weight for ranking. The first
(Figure 4A) contains pathways of five or six proteins
that were present, in their entirety, in the signaling data-
bases. The second (Figure 4B) are pathways predicted by
our method that consist of exactly six proteins and par-
tially overlap a known pathway. For these we asked
whether the additional interactions may represent known
or sensible extensions to the pathway that were not previ-
ously known or were not recorded in the databases. The
third (Figure 4C) are pathways discovered by our method
that do not match any known pathways in the databases.
For these we asked whether they represent known
pathways not in the databases or novel hypotheses that
make sense biologically.

In all three figures, we merged overlapping linear paths
discovered by our algorithm. Our algorithm’s predictions
can be easily merged in this manner to form larger signal-
ing networks because each edge is oriented uniquely in all
paths. This feature of our orientation algorithm

demonstrates its advantages over undirected methods. In
undirected approaches, although edges in a single pre-
dicted path have an implicit orientation because informa-
tion is known to flow from source to target, these local
orientations are not globally consistent across all predic-
tions. Thus, the predictions may either be considered in
isolation or merged into less informative undirected
networks [e.g. the pheromone response predictions by
Scott et al. (6)].
In Figure 4A, the path Sln1!Ypd1!Ssk1!Ssk22!

Pbs2 is a component of the high-osmolarity glycerol
(HOG) pathway. The filamentous growth pathway
contains the cascade Msb2!Cdc42!Ste20!Ste11!
Ste7. The remaining paths that begin at Rga1 or Ste50
and extend to Dig1, Dig2, Fus3, Ste7 and Ste12 are
members of the pheromone signaling pathway.

Partial match pathways

For the partial match pathways (Figure 4B), we found
evidence that many of their edges missing from the

Figure 4. The top-ranked pathways discovered by the random orientation plus local search algorithm. Solid edges were present in the gold standard
and dashed edges were absent or oriented in the opposite direction. (A) Pathways that are completely contained within a known gold standard
pathway. (B) Pathways that partially overlap a gold standard path but contain new edges as well. (C) Pathways that do not have any edges in
common with our set of gold standard pathways. Images were generated with Cytoscape (http://www.cytoscape.org/) and do not contain all of the
top-ranked paths per category but rather a highly overlapping subset.
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databases are in fact valid and that our algorithm
discovered previously unknown variants of common
signaling pathways. Some of these paths in the phero-
mone signaling pathway contain the edge Ste11!Ste5.
In the evaluation summarized in Table 2, this edge
was considered a mistake since in the gold standard
it was oriented in the opposite direction. That orienta-
tion is based on a model in which Ste5, after being
recruited by Ste4, mediates Ste20 phosphorylation of
Ste11 by facilitating the complex formation via its
scaffolding function. However, it was shown recently
that Ste5 and Ste11 already form a tight complex in the
cytosol, in fact with the highest affinity (50 nM) as
compared with all other pairwise interactions between
Ste5, Ste7, Ste11 and Fus3 (41). Thus, our predicted
Ste11!Ste5 edge is also valid. This interaction is
included in a number of paths because there is redundancy
in the function of some components downstream of this
edge so several of the partial matches are in fact complete
matches.
Another predicted interaction that disagrees with the

direction in the gold standard database is Pbs2!Ste11.
However, Pbs2 is a scaffold protein that simultaneously
binds the osmosensor receptor Sho1, the upstream
MAPKKK Ste11 and the downstream MAPK Hog1
(42). Thus, even though Ste11 acts on Pbs2, its scaffolding
function makes the edge direction ambiguous because
formation of the signaling complex at Sho1 is required,
and Sho1 and Pbs2 have therefore been termed
‘coscaffolds’. Thus, drawing the edge in both directions
is reasonable.
A particularly interesting prediction is the edge

Fus3!GPA1, which was not found in the gold standard
database. GPA1 is the Ga protein that is activated by
pheromone stimulation of the membrane receptors
which are G protein-coupled receptors. Thus, GPA1 is
located close to the top input level of the pathway and
is a critical step in mediating the sequence of six consecu-
tive intracellular events leading to Ste12 activation.
Recently, it was found that there is a feedback loop
from Fus3 (the kinase that directly activates Ste12) to
GPA1 to Ste4 (another subunit in the heterotrimeric G
protein complex), which is phosphorylated by Fus3 and
negatively regulates the pathway (43). Thus, the predicted
Fus3!GPA1 edge is supported by this experimentally
demonstrated feedback loop.
While most of the orientation results either agree

with the gold standard orientation or with recent
studies, we found two cases where the orientation
determined by the algorithm is likely wrong. The first
is the Ste11!Fus3 edge where both partners are part
of the same macromolecular complex but the logic pro-
gression of the signal requires another partner in the
complex. The second is the Ste12!Dig2 edge where
again a third protein is involved in the communication
of signal. Thus, in both cases the complex membership
may confuse the algorithm by creating ‘shortcuts’ that
are not biologically meaningful. The Supplementary
Results contain further discussion of the partial match
pathways.

Identified pathways that do not match any database
pathway

For pathways in Figure 4C, which do not overlap with
any of the pathways in the databases we used, we found
many edges that are either known or raise interesting bio-
logical hypotheses. The figure depicts nine of these paths
that are cell-cycle related. For example, three of the
pathways originate at Rga1, a regulatory protein import-
ant for cytokinesis (end of M) and bud site formation. It is
known to interact with Cln2 (44). Cks1 activates Cdc28
(45) and sends the M cyclin Clb2 to degradation (46).
Cks1, Cln2 and Cdc28 form a complex (47), and Cdc28
complexes phosphorylate many proteins in the G1/S tran-
sition, including Swi4 (48) and Swi6 (49) in a regular cell
cycle, Ste20 (50) in a mating response and during filament-
ous growth and Far1 (51) in response to alpha factor.
Another cascade starts with Ras2 and Cdc25 instead of
Rga1. These proteins work together and are important for
the exit from a G0 state (52). Along with Cdc28 they allow
the G1/S transition by increasing Cln2 levels (53). Both
Clb2 and Clb3 regulate Cdc28 activity and are expressed
in the G2 and late S phases, respectively (54). The
Supplementary Results and Table S11 contain additional
analysis of these paths.

Motivation for orienting all PPIs

In some cases it may be ideal to leave certain PPI in the
network undirected. However, in practice, orienting the
entire network does not affect our ability to correctly
discover signaling pathways due to the nature of the inter-
action data sets we use. In general, when a complex inter-
acts with some external protein, all (or most) members of
the complex are shown as interacting with that protein in
PPI databases. This is a consequence of the high-
throughput studies (e.g. pull-down assays) that often
cannot distinguish between direct and indirect inter-
actions. Thus, any orientation of the internal edges
between complex members is appropriate because
external proteins that interact with the complex are con-
nected to both endpoints of the internal edges.

Several of our cell-cycle paths in Figure 4C demonstrate
how our orientation of edges in a complex can correspond
to the biological truth. Clb2 and Clb3 each form a
complex with Cdc28, yet orienting the edges
Clb2!Cdc28 and Clb3!Cdc28 is justified because these
two proteins are also reported to activate Cdc28. In
addition, the edges Cdc28!Cln2!Ste20 represent the
Cdc28–Cln2 complex-mediating Ste20 even though this
predicted path does not contain a direct Cdc28!Ste20
edge.

In fact, allowing our algorithms to leave certain edges
undirected is not a viable option given our problem for-
mulation. Orienting an undirected edge can only reduce
the number of satisfied paths in the network and corres-
pondingly lower the objective function. Thus, the optimal
solution for all instances would be to not orient any edges.
One reasonable way to overcome this would be to penalize
solutions for including undirected edges, but setting the
parameter that controls the trade-off between the object-
ive function’s penalty term and path weight term would
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require much more training data (i.e. known signaling
pathways) than is currently available.

Extensions to other species

While the work so far has focused on yeast, our methods
can be directly applied to other species including humans.
Large high-throughput interaction data sets for human
are rapidly becoming available (14). Interactions of
human proteins with proteins of infecting pathogens
have also been cataloged recently (15). Other studies
provide information about downstream genes (17,18).
Combining these data sets provides both a network and
a set of sources and targets that can be used by our
method to infer pathways that are activated following in-
fection. We are also interested in linking our orientation
algorithms to methods that attempt to reconstruct regula-
tory networks (55). The combination of these two tech-
niques would provide a connection between the signaling
networks and the regulatory networks that are activated in
response to environmental cues.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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