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ABSTRACT

DNA sequences bound by a transcription factor (TF)
are presumed to contain sequence elements that
reflect its DNA binding preferences and its
downstream-regulatory effects. Experimentally
identified TF binding sites (TFBSs) are usually
similar enough to be summarized by a ‘consensus’
motif, representative of the TF DNA binding specifi-
city. Studies have shown that groups of nucleotide
TFBS variants (subtypes) can contribute to distinct
modes of downstream regulation by the TF via dif-
ferential recruitment of cofactors. A TFA may bind to
TFBS subtypes a1 or a2 depending on whether it as-
sociates with cofactors TFB or TFC, respectively.
While some approaches can discover motif pairs
(dyads), none address the problem of identifying
‘variants’ of dyads. TFs are key components of
multiple regulatory pathways targeting different
sets of genes perhaps with different binding prefer-
ences. Identifying the discriminating TF–DNA asso-
ciations that lead to the differential downstream
regulation is thus essential. We present DiSCo
(Discovery of Subtypes and Cofactors), a novel
approach for identifying variants of dyad motifs
(and their respective target sequence sets) that are
instrumental for differential downstream regulation.
Using both simulated and experimental datasets, we
demonstrate how current motif discovery can be
successfully leveraged to address this question.

INTRODUCTION

Transcription factors (TFs) are DNA binding proteins
that recognize and bind a small set of similar DNA
binding sites with high specificity to regulate the expres-
sion of multiple target genes. The binding sites of a TF can

be determined using in vitro or in vivo techniques.
The former include methods like SELEX and its
variants (1,2) and protein binding microarrays (PBMs)
(3), whereas the latter routinely involve chromatin
immunoprecipitation (ChIP) coupled with either micro-
arrays (ChIP-chip) or deep sequencing (ChIP-seq) [for
reviews see Ref. (4,5)]. In most cases, experimentally
found binding sites of a TF are similar enough to be
summed up by a ‘consensus’ motif or a ‘position weight
matrix’ [for an excellent review, see Ref. (6)]. In some
cases, however, a TF may show different binding prefer-
ences in vitro and in vivo (7,8). Furthermore, even in vivo, a
TF may bind variants of its main (or ‘canonical’) motif to
target distinct downstream genes [(9–11); reviewed in (7)].
Such variant sites are referred to as ‘non-canonical’ sites
and may contribute to distinct modes of downstream
regulation (12–16).
The precise nucleotide sequence of a TFBS plays an

important role, not only in attracting the corresponding
TF, but also in the recruitment of its cofactors and hence
in the mode of regulation of its targets. A TF A may bind
to TFBSs of subtype a1 or a2 and target different genes
depending on whether it associates with cofactor B or C,
respectively (Figure 1). For example, in Escherichia coli,
the cyclic AMP receptor protein (CRP) binds a 22-bp con-
sensus motif CRP-N to regulate roughly 100 genes
involved in the response to sugar starvation in the cell
(17). In Haemophilus influenzae, CRP recognizes the
typical CRP-N sites, but it also recognizes and binds to
a CRP-N variant, the non-canonical CRP-S motif (18,19).
The CRP-S sites are found in the promoters of genes
involved in ‘competence’, a process by which cells can
take up DNA from the environment, and which require
the presence of both CRP and another protein, Sxy, for
transcriptional activation. A similar functional CRP-S
regulon has also been identified in E. coli (13,20), suggest-
ing possibly a similar mechanism. Hence, the protein CRP
recognizes two highly similar but distinct motifs, subtypes
CRP-N and CRP-S, in the presence or absence of Sxy thus
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regulating different sets of downstream genes. Single
nucleotide changes too have been associated with the
choice of cofactors and the set of target genes as in the
case of the glucocorticoid receptor (16,21), NF-kB (22),
Pit-1 (23), Foxa2 (24), etc. In the following, we use the
term ‘subtypes’ of TFBSs to refer to groups of highly
similar but distinct nucleotide variants of the canonical
binding motif of a TF.
There is a plethora of computational TFBS motif dis-

covery methods [reviewed in Ref. (25–27)]. Typically these
methods ignore differences between canonical and
non-canonical motifs. Almost all tend to average slight
variations of the enriched motifs into ‘consensi’, thereby
not identifying TFBS subtypes. An initial attempt to
discover subtypes of single TFBS motifs was a kernel
estimations-based method presented by Kel et al. (28).
The authors tested their method on similar TFBSs of
two distinct TFs, AP-1 and CREB. Hannenhalli et al.
(29) and Georgi et al. (30) used mixture-model represen-
tations of existing position-specific probabilistic models
for TFBSs to account for subtypes of TFBSs.
Computational studies analyzing ChIP-chip/seq data
have also uncovered non-canonical variants of the main
TFBS motifs using information about distance from the
TSS or presence or absence of cofactor TFBSs
(9,12,21,24). In some cases, the discovered subtypes of
TFBSs had similar sequence consensus overall but
varying strengths of the sites (24). In other cases, the
two motifs were drastically different in sequence compos-
ition as well as in length (9). As useful as these approaches
are, they do not systematically address the fact that TF
binding preferences may change depending on different
cofactor associations.
Few motif discovery approaches focus on dyad motif

discovery. A dyad motif consists of two motifs separated
by a certain number of bases. The predictions from
dyad-based methods can be used further for building cis-
regulatory modules comprised of more than two compo-
nents. Guhathakurta et al. (31) and Liu et al. (32)
proposed Gibbs-sampling-based approaches to identify

dyads, defined as cooperatively acting TFs, two-block
motifs or gapped motifs. The method BIPAD (33)
predicts a dyad motif pattern, or a ‘two-block structured
motif’ with a given maximum inter-site distance by
optimizing over the total information content (IC) of the
two half-sites. Another approach GADEM (34) uses a
genetic algorithm followed by expectation-maximization
to discover ‘spaced dyads’, defined therein as two words
that are separated by a spacer. While most of these
dyad-discovery methods are PWM based, the approaches
of van Helden et al. (35) and Eskin et al. (36) are consen-
sus sequence based. The former uses word counting
followed by estimation of statistical significance to
discover spaced dyad elements, defined as a pair of short
conserved words separated by a region of fixed size and
variable content. The latter uses a single motif discovery
step to identify putative instances of composite signals
followed by an exhaustive search. Here, composite
patterns are referred to as groups of ‘monads’, or single
motifs, that occur near each other, with dyads being the
special case of a pair of monads that appear approximate-
ly within a given distance. In another work, Smith et al.
(37) use a set of candidate motifs that best predict local-
ization data and search the sequence neighborhood for
putative cofactor motifs.

None of the aforementioned approaches addresses the
question of identifying variants of the same motif of a TF
A, depending on whether it binds to DNA in the presence
of cofactors B or C (Figure 1). In the case of single motif
discovery, an average motif may be calculated for A;
whereas in the case of dyad motif discovery, a method
may fail to detect any dyad motif if the TFBSs of B and
C are substantially different. Since TFs usually participate
in multiple regulatory pathways, sometimes targeting dif-
ferent sets of genes with perhaps different binding
preferences, it is essential to identify the discriminating
TF–DNA associations that lead to different downstream
target genes.

We present DiSCo (Discovery of Subtypes and
Cofactors), an integrated approach to identify variants

Figure 1. Dyad-dependent modes of regulation. A TF A with DNA binding specificity a may bind subtypes, a1 and a2, of binding sites depending on
whether they co-occur with binding sites b and c of cofactors B and C, respectively. Alternatively, a TF that binds as a dimer may bind dyads a1:b or
a2:c depending on the sets of downstream targets and/or vice versa. Finally, two distinct TFs with highly similar but distinct binding sites a1 and a2,
may recognize and bind their respective TFBSs by associating with corresponding cofactors B and C, respectively. Logos represent the consensus
motifs of the TFs and d is the maximum inter-site distance.
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of TFBS dyad motifs and the subsets of sequences that
reflect the different modes of regulation adopted by the
TF. We refer to motifs of same length that differ margin-
ally as different subtypes of the main TFBS. While this
definition precludes examples where motifs of different
lengths have been discovered as being bound by the
same TF, it enables us to distinguish TFBS subtypes
based on variation purely in sequence composition and
not length differences. For simplicity, we do not take
into account position dependencies within a motif. As
mentioned earlier, we refer to pairs of binding sites that
occur within a maximum distance, say d, as dyads. Slight
variations from the consensus in either one or both com-
ponents of the dyad are termed as dyad subtypes. Unless
otherwise stated, the order or the orientation of the motifs
inside a dyad is not considered. Our assumption is that a
TF may adopt different binding preferences depending on
the constitution of enriched dyads in a set of target se-
quences (Figure 1), which could lead to different modes
of downstream regulation. Although it is possible that a
TF adopts more than two distinct modes of DNA binding
and regulation along with associated cofactors, to the best
of our knowledge, no such examples have been observed
yet. Note that while our main goal is to study subtype-co-
factor dependent modes of TF binding, TFs that bind as
dimers with varying dimer composition also fall into the
same technical framework. Finally, DiSCo can be used to
differentiate between highly similar DNA motifs of two
different TFs.

To highlight the applicability of our approach, we
utilize an existing PWM-based tool, BioProspector (32),
which performs both single and dyad motif discovery,
and is available for download and use. However, the
approach we present here is general and allows the use
of other dyad-discovery tools. We test DiSCo on
simulated and experimental data, and demonstrate how
existing motif discovery algorithms can be leveraged to
yield subtypes of pairs of TFBS motifs as well as the
sequence subsets that are enriched with them. The
DiSCo software consists of Perl scripts and R code for
clustering of TFBSs found using the freely available tool
BioProspector, and is available from the authors on
request.

MATERIALS AND METHODS

Let A be a TF with a DNA binding speciEcity represented
by the PWM PA. Let PA1 and PA2 be the PWMs repre-
senting two subtypes of the consensus binding site of A
that are associated with motifs PB and PC, respectively,
within a maximum distance d. Let S=SA1:B[SA2:C be
the set of sequences bound by A and containing instances
of motifs PA1 and PA2, respectively. In this setting, a
standard dyad discovery (SDD) method may yield motif
pairs that cluster together instances of both kinds of
subtype-cofactor pairs and hence have poorer
discriminating performance. We would like to have a
method that better characterizes the probabilistic models
PA1, PA2, PB and PC, and partitions S into subsets SA1:B

and SA2:C.

Approach

We propose a novel approach for dyad motif subtype dis-
covery, based on dyad enrichment that distinguishes
target sequence sets. The general idea is as follows
(Supplementary Figure S1). Sequences are partitioned
into two clusters based on initial predictions of a dyad
motif discovery algorithm. Each of the two clusters is
then subject to a second round of dyad motif discovery.
Focusing on subsets of sequences with highly similar
binding sites increases the signal-to-noise ratio, which in
turn enables higher quality prediction of binding site
subtypes. At the same time, the dyad motif discovery
yields TFBS subtype-cofactor relations and—if the query
dataset is a set of promoters—the respective downstream
targets. Let S1,. . ., SN be the N sequences containing the
targets of TF A. Let W and w be the widths of the two
components of the dyad which are enriched within a
maximum inter-site distance of d.

Step 1: de novo dyad discovery. In this article, motifs are
discovered using BioProspector (32), although, as men-
tioned earlier, any appropriate dyad-discovery tool can
be used. BioProspector is a Gibbs-sampling-based
method adapted for efficient gapped motif discovery
and consideration of higher order background
models. In the predictive-update step, it initializes two
motif models by randomly choosing two positions,
ai, bi on the same strand in each sequence Si such
that d ¼ bi � ðai+W� 1Þ: The models are constructed
by using the substrings of lengths W and w, respect-
ively, starting at ai, bi: In the sampling step, the
randomly chosen pair ðx1, x2Þ in each sequence is
scored as Fðx1, x2Þ ¼ m1ðx1Þ �m2ðx2Þ=�ðx1Þ � �ðx2Þ where
m1ðx1Þ,m2ðx2Þ are the respective probabilities of
generating x1, x2 under the two corresponding motif
models and � is the background distribution. For every
sequence, new positions for ai, bi are sampled with a prob-
ability proportional to Fðx1, x2Þ and the correspond-
ing substrings are used to formulate two new motif
models. The position for a substring x1 for the first
motif is sampled using its marginal distribution
Fðx1, �Þ ¼

P
x2
Fðx1,x2Þ, where the sum is over all

substrings of width w within the gap range d downstream
from x1. Then the position for segment x2 is chosen with
probability Fðx1; x2Þ=Fðx1; �Þ conditioned on x1.
In the default dyad-discovery mode, BioProspector

searches both strands of the input sequences for motif
pairs with widths W and w, respectively, within a gap
range [gmin, gmax] (d= gmax� gmin) such that not all se-
quences need contain a copy of the motif pair. After
multiple initializations (default=40) to avoid local
optima, it outputs the top five scoring motif pairs with
the corresponding sites, locations, strands and scores in
the relevant sequences. The scores correspond to the
average IC of the two halves of a dyad. Hence for a
motif pair, there can be multiple instances of site pairs
predicted in a sequence. If no background model file is
given, the input sequences are used to calculate the
background.
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For our approach the following settings of
BioProspector are used: (i) each sequence is searched for
at least one occurrence of the motif pair with a maximum
gap of gmax= d, hence gmin=0, and (ii) only the locations
of the highest scoring site pair in every sequence for the
top ranking motif pair are stored in each search. This
implies that for every sequence Si, Step 1 yields position
pairs ðai, biÞ corresponding to the best scoring site pair
under the top ranking motif pair. For the purposes of
the present study, the results of Step 1 correspond to
those of a SDD method.

Step 2: Site-based clustering. Let ðs
ð1Þ
i , sð2Þi Þ be the

substrings of lengths W and w, respectively, starting at
positions ðai, biÞ in Si. Our aim is to cluster together se-
quences that have highly similar binding sites of one or
both components in the dyad. Hence, for all se-
quences with a predicted site pair, we calculate the
pairwise proximity matrix D(i, j) by comparing the re-
spective highest scoring site pairs ðs

ð1Þ
i , sð2Þi Þ, ðs

ð1Þ
j , sð2Þj Þ:

The comparisons can be between the sites of the first
motif (i.e. with respect to the first motif, parameter
wrt=1), sites of the second motif (wrt=2) or sites of
both motifs (wrt=3). Unless otherwise stated, we calcu-
late the Hamming distance (HD) between the sites of both
motifs (wrt=3) in a pair of sequences Si, Sj, i.e.
Dði, jÞ ¼ HDðs

ð1Þ
i , sð1Þj Þ+HDðs

ð2Þ
i , sð2Þj Þ: We note that other

distance metrics can be used too. Once the pairwise prox-
imity matrix is formulated, we use the iterative clustering
method of Dubnov et al. (38) for clustering. This is a
non-parametric approach predicted to converge to two
broad clusters in most cases via a transformation on the
pairwise proximity matrix followed by hierarchical clus-
tering. The pairwise proximity matrix D(i, j) constructed
from the HD is iteratively transformed according to the
Jensen–Shannon divergence (39) and two broad clusters
extracted.

Step 3: Motif discovery on clusters. In a sequence, the
location of the site corresponding to the Erst motif in
the best scoring site pair is used as seed for the next
round of motif discovery in the respective cluster the
sequence belongs to. This means that in Gibbs sampling
the Erst motif is initialized at the locations of the corres-
ponding sites predicted in the previous round. Motif dis-
covery is performed on both clusters yielding four newly
discovered PWMs, two from each cluster. The results of
this motif discovery after clustering are referred to as those
of our algorithm DiSCo, i.e. Steps 1–3 constitute a single
run of DiSCo. While the algorithm can be iterated until
convergence, we observed that a single iteration has suffi-
cient discriminating power and there is no practical im-
provement in performance after the first iteration (data
not shown). Hence, in the following tests, we present
results where we only run DiSCo (Steps 1–3) once.

Post-processing of stochastic dyad motif finder results

Our approach uses the initial predictions of a dyad
motif-finding program like BioProspector (32). In
general, since most dyad-discovery methods are stochas-
tic, their outputs may vary in each run. Thus, for the

analysis of biological examples, our algorithm includes a
post-processing step, in which the pipeline runs multiple
times and the final output is decided by majority polling.
Consider the motif-discovery step of either before or after
clustering. On running motif discovery ‘Nrun’ times, for
each sequence, the pair of sites predicted most often across
all runs is considered a ‘robust’ prediction. Similarly, the
run in which the output PWMs are composed of robust
pairs of sites for the majority of sequences is likely to be
the one with the most robust output. That is, the PWMs
are formulated from sites that are predicted most often
across ‘Nrun’ runs. For both SDD and DiSCo, we select
the run that yields the most robust site pairs over all runs
for the majority of sequences as the final output. Hence,
both SDD and DiSCo end up predicting only one dyad
occurrence per sequence.

Suppose that after SDD, the highest scoring site pair
in sequence Si in the j-th run is located at
ða
ðjÞ
i , bðjÞi Þ: Hence, over ‘Nrun’ runs, we have the loca-

tions of the highest scoring site pair for se-
quence Si : fða

ð1Þ
i , bð1Þi Þ, ða

ð2Þ
i , bð2Þi Þ, . . . , ðaðNrunÞ

i , bðNrunÞ
i Þg: Let

ða
ð�Þ

i , bð�Þi Þ be the robust prediction for sequence Si. That
is, it is predicted most often to be the location of the
highest scoring site pair in Nrun runs, say it is predicted
in Ri : fr

ð1Þ
i , rð2Þi , . . . , rðNiÞ

i g runs. Hence, for each sequence
Si, we have Ri as the set of runs with the robust location as
the final prediction. We choose the output of the run
R� ¼ \Ni¼1Ri that predicts robust locations for all se-
quences. Clearly, it is possible that no single run predicts
the robust locations of all sequences, in which case we pick
a run that predicts it for the maximum number of se-
quences. In case all Nrun runs yield different predictions,
we choose the prediction of a randomly selected run as
ða�i , b

�
i Þ: If more than one location pair is predicted often

and same number of times, we randomly choose one to be
the robust location and so on. The same procedure is
followed for DiSCo.

The dyad(s) discovered after the majority polled run is
taken as the final output of the method (SDD or DiSCo).
To provide an estimate of the significance of the motif
found, a P-value for each site of each of the motifs
constituting the final dyad(s) is also calculated. The
P-value is calculated by simulating the background
motif score distribution by sampling N=100 000 in-
stances from the input nucleotide distribution. The
P-value of a site corresponds to the probability of such
a random instance having a motif log-odds score at least
as high as that of the site. Additionally, Monte Carlo
simulations can be performed by running DiSCo with
the same parameters on randomly generated datasets
with the same sequence number, length and nucleotide
distribution as the original data and comparing the
mean motif scores of the final dyads found.

Evaluation datasets

Simulated data. First, we compare the performance of
DiSCo (i.e. results after clustering in Step 3) versus SDD
(i.e. results after Step 1) in a controlled setting. Simulated
datasets are constructed by implanting binding sites
sampled from artificial PWMs (10 bp long), of varying
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IC into 20 (200-bp long) random sequences sampled from
the uniform background distribution. The artificial PWMs
were generated from randomly selected matrix columns in
the TRANSFAC (40) database (version 11.2). The
TRANSFAC matrix columns were categorized as being
of low (L; 1 � IC � 1.5) or high (H; 1.5 � IC � 2) IC.
To create a PWM of length W of high (or low) IC, we
randomly choose W number of high (or low) IC columns.
For generating the subtype a2 of motif a1, a proportion �
(�=0%, 30% or 40%) of the columns of a1 are randomly
selected and the consensus nucleotide (A, C, G or T) is
permutated. In each sequence, a site sampled from one
matrix (say a1 or a2) is implanted at a random location
followed by one sampled from another matrix (either b or
c) within a randomly selected distance d’ � d= 20. For
each dataset, two kinds of sequences with different site
pairs are constructed and the known locations of the im-
planted sites stored. One complete dataset S is made up of
two subsets of sequences: S1 with sites sampled from motif
models of subtype a1 and motif b (a1:b), and S2 with sites
from subtype a2 and motif c (a2:c). Without loss of gener-
ality, sites are implanted in the forward strand only. Since,
for each sequence, only the best scoring site pairs are
reported, we calculate the true positive (TP) and false
positive (FP) sites by comparing the predictions after
SDD and DiSCo with the known locations. Steps 1–3
are run multiple times (Nrun=20) to calculate average
sensitivity. For de novo dyad discovery, both in SDD at
Step 1 and DiSCo in Step 3, we search for pairs of motifs
of widths W=w=10 with a maximum gap of d=20.
Only the forward strand is searched for at least one
instance of the motif pair. BioProspector is run for the
default number of initializations and the sites of both
motifs are used for calculating the HD at the clustering
step (i.e. wrt=3).

CRP dataset. The E. coli CRP protein is a well-studied
TF known to regulate hundreds of genes involved in
carbon-energy starvation response amongst other func-
tions [for a review see Ref. (41)]. In E. coli, CRP typically
recognizes and binds a 22-bp symmetric motif (CRP-N)
AAATGTGA(N6)TCACATTT (42). InH. influenzae, CRP
binds not only the typical CRP-N sites, but also a
variant CRP-S, which is enriched in the promoters of
competence genes (18,19). This variant differs from
CRP-N sites at one position in the core of each of the
half-sites, TGCGA(N6)TCGCA in CRP-S instead of
TGTGA(N6)TCACA in CRP-N (Figure 3), and requires
CRP and another protein, Sxy, for transcriptional activa-
tion (19,43). Recently, Sinha et al. (20) identiEed the
equivalent CRP-S regulon in E. coli and demonstrated
its requirement of both CRP as well as Sxy for transcrip-
tional activation. The fact that regulation of the compe-
tence genes requires the CRP-S and not the CRP-N motif
shows that differences in the binding motifs (and
associated cofactors) can be directly associated with dif-
ferential regulation of certain categories of genes.

We focus on 300 bases upstream of the CRP-N and
CRP-S target genes in both E. coli and H. influenzae.
Using the available CRP matrix (44), we retrieved the
list of the E. coli CRP-N genes with experimentally

found sites within 300-bp upstream of the TSS. For the
E. coli CRP-S sequences, we used the 34 transcriptional
units found to be differentially regulated by Sxy and con-
sidered putative CRP-S genes by Sinha et al. (20). For
both sets, we extracted the corresponding upstream se-
quences from the E. coli K12 genome using RSATools
(35), allowing for overlaps and not admitting imprecise
positions. For completeness, we manually obtained se-
quences for genes whose identifiers did not yield
matches. This resulted in a total of 25 CRP-N sequences
and 37 CRP-S sequences in E. coli with 48 and 43 sites,
respectively. The H. influenzae CRP-N and CRP-S genes
were taken from the Supplementary Data of Cameron
et al. (13). Using the complete genome sequence and co-
ordinates information of the H. influenzae Rd KW 20
genome as downloaded from The Comprehensive
Microbial Resource (45), we extracted the upstream
regions for the respective transcriptional units for the
two sets that contained 41 and 13 sequences respectively.

AP-1 and CREB dataset. We also considered two distinct
TFs, AP-1 and CREB, that have binding sites that differ
slightly at the 30 end of the core regions (see below). A
mixture of TFBSs retrieved from the TRANSFAC
database (40) for these two TFs was used by Kel et al.
(28) in a study aimed to distinguish between subtypes of
single patterns. Their method successfully discovered two
motifs of lengths 7 and 8 that were identical to the
TRANSFAC motifs of AP-1 and CREB, respectively.
Our focus is not just extracting subtypes of TFBSs
but also the motifs from the surrounding regions
associated with potential cofactors. Hence, for the
present study, we retrieved 50 bp around the sites
contributing to the matrices for AP-1 and CREB in
TRANSFAC (40) (version 11.2) (IDS V$AP1_Q2_01
and V$CREB_Q4_01, respectively). Although there
are numerous matrices for AP-1 and CREB in
TRANSFAC, we choose to use these since they are
formulated from experimentally derived sites from verte-
brate species. We retrieved sequences from EBI using
‘dbFetch’ for the sites with EMBL IDs in the ‘site.dat’
Ele of the TRANSFAC database. The sites were then
mapped onto the EBI sequences and ±50-bp regions ex-
tracted for analysis. We ran DiSCo for Nrun=20 times
and compared the resulting PWMs with the TRANSFAC
database using STAMP (46), with no trimming for weak
IC columns and default settings otherwise.

NF-�B dataset. Using a computational approach, Busse
et al. (14) studied the NF-kB TFBSs in the regulatory
regions of genes activated in the Toll and Imd pathways
in Drosophila. They identiEed pathway-speciEc character-
istics of the kB sites: nearly two-thirds of the Imd-speciEc
promoter set had a GGGGA 50 half-site. This site is
absent in the Toll-speciEc set which instead had either
GGGA or GGAA 50 half-site in the upstream regions of
the corresponding genes (14). We retrieved the 16 and 11
Toll- and Imd-specific sequences with a total of 17 and 21
sites, respectively, from the Supplementary Data of Busse
et al. (14).
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RESULTS

Evaluation of performance on simulated data

We study the problem of identifying dyad subtypes
through simulated datasets that emulate sequences with
binding site pairs that vary in signal strengths. The aim
is to compare the performance of SDD (standard de novo
dyad discovery before clustering) with DiSCo (dyad dis-
covery after clustering), in a controlled setting. To this
end, we generate sequence datasets with pairs of sites im-
planted at a maximum inter-site distance d. Sites are
sampled from artificial matrices a1, b, a2 and c of
varying IC. Each dataset, S, consists of two kinds of
sequence subsets, S1 and S2, such that S1 has implanted
sites sampled from motif models a1 and b and S2 has those
sampled from a2 and c, respectively. Here, a1, a2 represent
subtypes of a motif with varying amounts of dissimilarities
between each other (see ‘Materials and Methods’ section).
The predicted locations after SDD and DiSCo are
compared with the implanted locations to calculate the
TP and FP predictions. Since the number of known and
predicted sites per sequence are equal, we use the average
sensitivity (TP/TP+FN) over multiple runs for perform-
ance evaluation. The results are presented in Figure 2.
In general, irrespective of the average total IC of the

matrices used, the performance of de novo discovery
both before and after clustering deteriorates as the simi-
larity between a1 and a2 decreases (i.e. from �=0% to
40%, Figure 2). Clearly, the presence of sites that are
sampled from the same or very similar motifs throughout
the sequence set enables the SDD to yield more correct
predictions, which also helps DiSCo. As the dissimilarity
between the two subtypes increases, SDD deteriorates in
performance yielding more false predictions. Since the
output of SDD is used to seed the DiSCo motif discovery,
incorrect predictions after SDD negatively affect DiSCo.
However, the decrease in average sensitivity for DiSCo is
less than that of SDD as the similarity between a1 and a2
decreases. For most matrix combinations, DiSCo yields a
significantly higher average sensitivity than SDD, a direct

consequence of the increased signal-to-noise ratio after
clustering. In the case where both matrices are of low
IC, both methods perform poorly, with no significant dif-
ference in their average sensitivity values. Again, at low
IC, the predicted sites for both motifs after SDD are poor,
which in turn influences the behavior of DiSCo. Since all
motifs are poorly informative, putative predicted sites of a
motif after SDD are inclined to be quite dissimilar to each
other making them more unlikely to fall in the same
cluster, leading to a detrimental effect on the performance
of DiSCo. Finally, as expected, the increase in the average
total IC of the constituting matrices improves the per-
formance of both methods. The case of the (L, H)
dataset is interesting. This is where the first and second
motifs have low and high IC, respectively. A drop in the
average sensitivity values is observed from the (L, H) to
(H, L) dataset even though there is an increase in the total
average IC. This is a consequence of using BioProspector,
which is designed to find the strongest motif first and then
search only downstream for the second motif. Hence, here
BioProspector discovers the stronger motif (in this case,
the second motif) first, which leads to increased false pre-
dictions for the weaker motif [located upstream in the
(L, H) dataset] yielding a dip in sensitivity values.
Again, although this affects negatively both SDD and
DiSCo, DiSCo performs better (Figure 2). We performed
similar simulations with search parameters changed to
motif widths of W=w=8 and got similar results.
Additionally, we generated and analyzed simulated
datasets with increased inter-site distance (d= 50 bp)
and the results were practically the same (data not
shown). In summary, as the difference between a1 and a2
increases, there is an improvement in DiSCo performance
due to clustering.

Evaluation on the CRP dataset

CRP motifs provide an appropriate dataset for testing our
algorithm for the following reasons. Although both
CRP-N half-sites are highly similar between E. coli and

Figure 2. DiSCo outperforms SDD on simulated datasets. The average sensitivity after Standard dyad discovery (SDD; white) and DiSCo (grey) as
the proportion of dissimilarity between the subtypes a1 and a2 increases from �=0%, 30% and 40%, is shown. The bars are plotted for datasets
with increasing mean total IC of the constituting matrices with the labels denoting the individual IC levels for the first (a1 or a2) and second motifs
(b or c) used to construct a dataset. For example, ‘L, H’ denotes the datasets where motif models a1 and a2 are of low IC levels and b and c of high
IC levels, respectively. L: low IC and H: high IC category, respectively. The error bars indicate standard errors. The proportion of dissimilarity is
measured as the percentage of dissimilar positions between two matrices.
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H. influenzae (TGTGA), the CRP-S sites differ between
the two species, especially in the second half-site. In par-
ticular, both species have similar first half-sites in the
CRP-S motifs, except in the last base (Figure 3B and
D); whereas the second half-site, that lies 6-bp away,
appears to be species specific. Thus, we can treat the two
half-sites as two separate motifs: one that is shared
amongst all sequences and another that differs between
the two subsets (in this case, the two subsets come from
two different organisms). Focusing on a single species, the
complete CRP datasets can also be used to test DiSCo. In
H. influenzae the two CRP motifs vary in both half-sites
(Figure 3A and B). Here, one type of dyad is enriched in
CRP-S related promoters and the other in CRP-N related
ones. In this case, both components of the dyads are
speciEc to a (different) regulatory mode—competence or
non-competence related. Lastly, in both species, the
complete 22-bp CRP sites have variants CRP-S and
CRP-N, depending on whether they are derived from pro-
moters of competence or non-competence genes, respect-
ively. In the former case, CRP binding requires the
presence of the protein Sxy. Here, one TF (CRP) binds
to subtypes of TFBSs, CRP-N and CRP-S, respectively,
depending on the presence of cofactors. This provides an
opportunity to explore novel motifs that might be
speciEcally associated with the regulation of competence
genes by CRP.

The different aspects of the CRP dataset Et well into
our technical framework and provide an excellent test case
scenario. We use the E. coli and H. influenzae CRP
datasets to demonstrate the applicability of DiSCo in a
biological setting through three main analyses. First, as
a proof of principle we run DiSCo on the pooled set
of CRP-S sequences from these two species to automat-
ically partition them into two species-speciEc clusters
and identify the dyads enriched in each. The two
species-specific datasets have similar first half-sites but dif-
ferent second half-sites. Second, we run DiSCo on the
set of pooled CRP-N and CRP-S sequences from
H. influenzae in order to predict the two distinct dyad
types and their corresponding targets. In this case,
both first and second half-sites are different between
the two datasets. Finally, we use DiSCo to study
putative motifs that might be associated with each

complete CRP dyad subtype in H. influenzae. In each
case, site P-values are calculated as described in
‘Materials and Methods’ section. The maximum
P-values for each motif output are presented in
Supplementary Table S1.

Similar first half-sites, different second half-sites. We
studied the pooled E. coli and H. influenzae CRP-S-
associated promoter sequences. The motifs of the best
scoring sites in the majority polled runs of SDD and
DiSCo, when searching both strands for motif pairs of
widths 5 each at a distance of 6 bp, are presented in
Figure 4. Both methods discover the first half-site of the
two species-specific TFBSs, though in one case the pre-
dicted motif is slightly shifted. For the second half-site,
the motif discovered in SDD resembles more closely the
second half-site of the E. coli CRP-S motif. Clearly, the
greater number of E. coli CRP-S related sequences (37
E. coli versus 13 H. influenzae CRP-S) dominated the
motif discovery in SDD, resulting in a motif that seems
to average the individual dyads. In contrast, DiSCo
identifies two sequence clusters with enriched dyads that
correctly match the CRP-S motifs of H. influenzae (C1)
and E. coli (C2). Since the first half-sites are very similar
between the two species and present in almost all se-
quences, it is easy for SDD to correctly predict the loca-
tions of the first motif in the sequences. Using these
predicted locations to initialize the motif discovery after
clustering enables correct predictions for this motif in
DiSCo. This ultimately leads to better identification of
species-specific sequences as well as dyad subtypes. All
H. influenzae CRP-S sequences correctly fall in the same
cluster and majority of E. coli CRP-S sequences are clus-
tered together, with only �24% of E. coli CRP-S se-
quences being misclassified (i.e. clustered with
H. influenzae CRP-S). It should be stressed here that the
pooled and weak second half-site discovered using the
SDD is not necessarily the shortcoming of the underlying
method used (in this case, BioProspector). Given the limi-
tations of experimental knowledge, most motif discovery
methods are inclined to do the same. However, as
demonstrated, it is feasible to use the current state-of-
the-art methods to further address questions of binding
site subtypes.

Figure 3. Motif logos of the CRP-N and CRP-S sites of H. influenzae and E. coli. Haemophilus influenzae CRP-N (A) and CRP-S (B) motifs created
from sites retrieved from the Supplementary Tables of Cameron et al. (13); E. coli CRP-N (C) and CRP-S (D) motifs created from sites retrieved
from (44) (CRP-N) and (19) (CRP-S). Logos generated using enoLOGOS (49).
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Different first and second half-sites. Next, we analyzed the
pooled CRP-N and CRP-S related sequences in
H. influenzae with resulting motifs shown in Figure 5
(both strands searched for motif pairs of widths 8 each
at a distance of 6 bp). Here, besides the difference in the
cores, the differences in the surrounding regions of the two
half-sites in CRP-S and CRP-N are also prominent. The
dyad motif discovered after SDD matches the CRP-N
motif of H. influenzae, which might be due to the greater
number of CRP-N related sequences (41) as compared to
CRP-S related sequences (13). The two dyads DiSCo
yields clearly resembling the two motifs. The CRP-S se-
quences again are clearly clustered together yielding a
strong CRP-S like motif. Hence, despite the two half-
sites differing in both sets, DiSCo successfully partitions
the sequences into those enriched with the speciEc subtype
of CRP hetero-dimers.

Sequence properties of putative cofactors. To study if
there exist additional sequence motifs that are needed
for regulation of CRP-S sequences, we use DiSCo to

analyze the target sequences of both CRP variants to
search for dyads where one motif is of length 22 bp. The
aim here is 2-fold. One, to study if DiSCo is able to
identify the two CRP variants along with their corres-
ponding sequence subsets in each species; and two, to in-
vestigate additional sequence signals that might co-occur
with each CRP binding site variant, and might aid in the
decision of the specific mode of regulation employed by
CRP. Since Sxy itself lacks a DNA binding domain and
no Sxy binding sites are known, we run DiSCo multiple
times with varying parameter values, like motif widths for
the second component of the dyad and multiple gap
values. This is a typical procedure for many biological
problems, when no additional information is known
about the potential cofactors. For one of the components,
we search for 22-bp long motif. In both species, irrespect-
ive of the width of the second component, DiSCo success-
fully identified the CRP motifs and their target sequence
subsets (clusters). On searching for motif pairs of widths
W=8 and w=22, within a maximum gap of 10 bp on
both strands, we found both CRP-N- and CRP-S-like sites

Figure 4. Motifs found on CRP-S sequences of E. coli and H. influenzae. The dyads discovered in the majority polled run after SDD (top row) and
DiSCo (two bottom rows) are shown. SDD yields a dyad whose components predominantly resemble the two half-sites of the E. coli CRP-S motif.
In contrast, DiSCo identifies clusters C1 and C2; C1 is enriched with a dyad similar to the H. influenzae CRP-S motif (Figure 3B) and C2 is enriched
with one that is similar to the E. coli CRP-S motif (Figure 3D). Average misclassification error=0.2045.

Figure 5. Motifs found on CRP-N and CRP-S sequences of H. influenzae. The dyads discovered in majority polled run after SDD (top row) and
DiSCo (bottom two rows) are shown. SDD yields a dyad whose components have clustered together the half-sites of both types of H. influenzae CRP
motifs (Figure 3A and B). DiSCo however is able to successfully identify two clusters C1 and C2 whereby C1 is enriched with a dyad similar to the
H. influenzae CRP-N motif (Figure 3A) and C2 with one that resembles the H. influenzae CRP-S motif (Figure 3B). Average misclassification
error=0.23.
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co-occurring with AT-rich motifs (data not shown).
Previously, Cameron et al. (43) had observed A+T runs
upstream of the CRP-S sites in H. influenzae that were
required for promoter activation. From our analysis,
such motifs seem to be present close to CRP-N sites
also. On reversing the order of motif widths (W=22
and w=8bp), again yields AT-rich motifs (data not
shown). It seemed that there are only slight differences
between the associated motifs of each CRP variant.
However, for their motif analysis, Cameron et al. (43)
aligned sequences that were 200-bp upstream of genes
and found E. coli s70-like sites downstream of the
CRP-S sites. Following that study, we also restricted our
search space to 200-bp regions. For this search, we used
the same motif length parameters W=22 and w=8bp,
and a maximum gap of 20 bp. We searched both strands
and the forward strand only. In both cases, we identified
two clusters, each enriched with one type of CRP motif. In
the latter case, though, for the cluster enriched with the
CRP-S like motif, the second component matches the first
half of the E. coli s70 motif (Figure 6) while the cluster
enriched with the CRP-N like motif had a second motif
which is AT-rich, but dissimilar to the TTG stretch of
E. coli s70. Hence, while the CRP-S sites seem to have
at least part of an E. coli s70-like motif downstream, the
CRP-N sites do not. In general, by using DiSCo to
analyze this biological dataset thoroughly, we were able
to identify the two CRP motif subtypes separately
along with the distinguishing possible cofactor motif.
This shows the direct applicability and usefulness of
DiSCo in addressing biological problems.

Evaluation on the AP-1 and CREB dataset

AP-1 and CREB are two TFs with similar but not identi-
cal binding sites, which mainly differ at the 30 end of the
core regions (Figure 7A). We tested whether DiSCo is able
to identify the two types of binding sites, automatically
partition their target sequence sets and in the process
identify the surrounding sequence motifs associated with

them (if any). To this end, we pooled together and
analyzed the complete set of sequences containing both
kinds of TFBSs. We searched both strands of all se-
quences for motif pairs of widths 7 bp each and a
maximum gap of 5 bp using sites of both motifs to calcu-
late the clustering measure in DiSCo (i.e. wrt=3). The
motifs found in the majority polled runs of SDD and
DiSCo are presented in (Figure 7B, P-values are
reported in Supplementary Table S1). SDD identified a
dyad where one motif is similar to both AP-1 and
CREB. In other words, the two kinds of TFBSs are
pooled together (Figure 7B, top row). However, DiSCo
segregates the two sequence sets into two clusters and
identifies the individual TFBS motifs (Figure 7B, two
bottom rows). The cluster of sequences enriched with
the CREB-like motif, contains another co-occurring
motif with high-ranking matches to CAC binding motif
and Pax-4 in TRANSFAC. On comparing with JASPAR
(47) (version 2010), this motif matches Krueppel-like
factor 4 (KLF-4). The protein KLF-4 has been shown to
be involved in the regulation of mouse B2R promoter by
the formation of a higher-order complex with CREB and
p53 in conjunction with the co-activator p300/CBP
(CREB binding protein) (48). It is likely that CREB and
KLF-4 are together involved in the regulation of
other genes too, using possibly a similar mechanism.
However, we could not find any evidence for the second
motif we identified in the sequence set enriched with
the AP-1–like motif. In summary, for this set of TFBSs,
surrounding sequence lengths and search parameters,
the TFBSs of CREB tend to co-occur with those of
KLF-4.

Evaluation on the NF-iB dataset

NF-kB has two highly similar sites enriched in pathway-
speciEc promoters (14) (Figure 8). However, there are a
couple of points that need to be noted here. First, the
spacer lengths in the two sites is different; four or five
bases for Toll-speciEc sites, and two or three bases for

Figure 6. Motifs found on CRP-N and CRP-S sequences of H. influenzae with one motif of complete CRP length. The dyads discovered in majority
polled run after SDD (top row) and DiSCo (two bottom rows) when the search is performed for the complete CRP motif as the main motif, are
shown. SDD yields a pair of motifs, one of which has grouped together the complete CRP-N and CRP-S motifs of H. influenzae (Figure 3A and B),
and the other is an AT-rich motif. In contrast, DiSCo successfully identifies two clusters C1 and C2 where C1 is enriched with the H. influenzae
CRP-N-like motif (Figure 3A) and C2 with the H. influenzae CRP-S-like motif (Figure 3B). Additionally, the second motif discovered in C2 closely
resembles the first half of the E. coli s70 motif, found previously also by Cameron et al. (43). Average misclassification error=0.24.
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the Imd-speciEc sites. Since we do not distinguish between
variants based on intra-site spacer lengths, this informa-
tion is not taken into consideration by DiSCo. Second, the
Toll and Imd sets also differ in the number of sites they
have per promoter. While most of the promoter sequences
in the Toll dataset contain only single kB site instances,
most of the promoters in the lmd dataset contain multiple
kB sites. This implies that while the total number of Toll
and Imd promoters was 16 and 11, respectively, the total
number of sites was 17 and 21, respectively. Finally, in
approximately half of the Imd sites the 30 half-site
diverged from the canonical site also, which makes it dif-
ficult to use dyad discovery to distinguish between the Toll
and Imd sets, since differences already exist among the
promoters in the Imd set. Keeping these issues into con-
sideration, we used DiSCo to analyze the complete set of
Toll- and Imd-speciEc sequences. We searched for motifs
of widths 4 and 5, respectively, on both strands and we
calculated the clustering measure based on the sites of the
second motif only (i.e. wrt=2). The logos of the best
scoring sites in the dyads found in the majority polled
run by SDD and DiSCo are shown in Figure 8 (P-values
are reported in Supplementary Table S1). Since the two
subtypes are highly similar, SDD predicts a dyad that
summarizes the slight dissimilarities by clustering the
two pathway-specific NF-kB motifs into one. On the
other hand, DiSCo successfully separates the sequences
into two clusters that are enriched with one kind of
dyad each. Since here the dyad is comprised of the

whole NF-kB motif in each set, the two pathway-specific
motifs are hence identified.

DISCUSSION

Advanced technologies that enable the collection of
high-throughput in vivo and in vitro TF–DNA interaction
data have shed new light on the changes in the DNA
binding preferences of a TF in vivo. For eukaryotic organ-
isms with complex mechanisms of gene regulation, the
in vivo binding preferences of a TF frequently depend on
the presence or absence of cofactors. Research has un-
earthed examples where subtypes of TFBSs contribute to
the regulation of different pathway- or function-specific
target genes. Typically, the standard approach for
analyzing TF-bound sequences is to perform simple
de novo single or dyad motif discovery. In this work, we
presented DiSCo, a first attempt to computationally
address the following question: given a set of unaligned
DNA sequences bound by a TF A, identify putative
subtypes a1 and a2 of TFBSs that depend on the
presence of TFBSs for possible cofactors B and C, respect-
ively. The main steps of DiSCo consist of dyad motif dis-
covery on the complete sequence set, followed by
clustering of sequences based on the similarity of the
found dyads, and finally performing dyad motif discovery
in each cluster separately. The clustering step helps in
reducing the search space, making the second dyad
motif discovery more efficient. Through analysis of both

Figure 7. Analysis on the AP-1 and CREB dataset. (A) Logos of AP-1 (V$AP1_Q2_01) and CREB (V$CREB_Q4_01) matrices from TRANSFAC
are shown. (B) Logos formulated from the best scoring sites of the dyads discovered in the majority polled run after SDD (top row) and after
clustering (DiSCo; two bottom rows) on the complete set of AP-1 and CREB sequences are shown. SDD yields a dyad composed of a CREB-like
motif (STAMP best match to ATF4, E-value �10e-09 and to CREB with E-value �9e-08) and a motif that matches DEAF1 (E-value �2e-04). The
clusters resulting from DiSCo are enriched with AP-1 and CREB motifs, respectively. The cluster C1 [second row in (B)] is enriched with a dyad
whose components match CREB and CAC-binding motif (E-values of �2e-11 and �10e-04, respectively). On comparing with JASPAR, the second
motif best matches KLF-4 (E-value=4.4e-03). The components of the dyad discovered in cluster C2 [third row in (B)] match AP-1 and Adf-1
(E-values of �6e-11 and 4e-03, respectively). Average misclassification error rate=0.22.
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artificial and biological datasets, we demonstrated that the
approach of DiSCo improves on TFBS detection as
compared to standard dyad motif discovery. This was
so, even when we considered the top two dyads of the
standard motif discovery method or when we masked
the occurrences of the first dyad and then searched for a
second one (see Supplementary Data).

In its current form, DiSCo uses BioProspector (32) for
dyad discovery, although the underlying approach is
adaptable to any appropriate dyad-discovery algorithm.
Naturally, DiSCo inherits the same problem of
signal-to-noise ratio that all motif finders have. In most
practical applications where no prior knowledge is avail-
able, the user typically performs multiple searches with
varying parameter values (motif length, promoter length,
etc.) in order to identify motifs that may have biological
significance. Also, DiSCo is flexible in the choice of the
clustering method and the pair-wise similarity measure it
uses. The current clustering method used to extract two
broad clusters can be used to recursively extract more
clusters, in effect yielding multiple instances of dyad
subtypes. Clearly, in this case, larger input datasets may
be needed. By default, DiSCo performs the clustering
based on the weaker of the two motifs to enable better
discriminating power. However, when this motif has
very poor IC (close to the background), then using
both halves of the dyad for clustering might be more effi-
cient. Similar to most other SDD algorithms, DiSCo
reports the average IC of the dyads discovered after
running multiple initializations, which can be used to
compare the quality of dyads predicted across multiple
parameter settings.

The DiSCo approach can also be used to analyze a
stringently selected set of bound sequences to identify
dyads with relatively short inter-motif distance d. But
even stringently selected peaks from ChIP-chip or
ChIP-seq data tend to be noisy. When we analyzed
noisy artificial datasets where 20% of the sequences did
not contain any motif, we found that DiSCo performance
was fairly stable and superior to SDD (see Supplementary
Data for results with additional noise levels). Large-scale
datasets (e.g. from ChIP-chip and ChIP-seq experiments)
are paving the way for in-depth analysis of in vivo binding
preferences of a TF, and an approach such as DiSCo has
the potential to help elucidate the preferential mode of
TF–DNA interaction under different conditions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Figure 8. Analysis on NF-kB dataset. (A) Logos of Imd- and Toll-specific NF-kB sites. (B) Dyads discovered in the majority polled run after SDD
(top row) and DiSCo (two bottom rows) for the complete set of Imd- and Toll-specific NF-kB sequences. SDD yields a dyad that has pooled the two
pathway-specific subtypes of sites. The clusters resulting from the Step 3 of DiSCo are enriched with Toll specific [C1, second row in (B)] and Imd
specific [C2, third row in (B)] kB sites, respectively. Average misclassification error rate=0.28.
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