
Novel insight into the non-coding repertoire through
deep sequencing analysis
Ofer Isakov, Roy Ronen, Judit Kovarsky, Aviram Gabay, Ido Gan, Shira Modai and

Noam Shomron*

Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University,
Tel Aviv 69978, Israel

Received October 12, 2011; Revised and Accepted February 23, 2012

ABSTRACT

Non-coding RNAs (ncRNA) account for a large
portion of the transcribed genomic output. This
diverse family of untranslated RNA molecules play
a crucial role in cellular function. The use of ‘deep
sequencing’ technology (also known as ‘next gener-
ation sequencing’) to infer transcript expression
levels in general, and ncRNA specifically, is
becoming increasingly common in molecular and
clinical laboratories. We developed a software
termed ‘RandA’ (which stands for ncRNA Read-
and-Analyze) that performs comprehensive ncRNA
profiling and differential expression analysis on
deep sequencing generated data through a graph-
ical user interface running on a local personal
computer. Using RandA, we reveal the complexity
of the ncRNA repertoire in a given cell population.
We further demonstrate the relevance of such an
extensive ncRNA analysis by elucidating a multitude
of characterizing features in pathogen infected
mammalian cells. RandA is available for download
at http://ibis.tau.ac.il/RandA.

INTRODUCTION

Non-coding RNAs (ncRNA) account for a large portion
of the transcribed genomic output (1). They are a diverse
family of untranslated transcripts that have crucial roles in
cellular function. It has been shown, for example, that
ncRNAs modulate the biogenesis and activity of ribo-
somes [small nucleolar RNA, (snoRNA)] (2), repress
gene expression [via microRNAs (miRNA)] (3), facilitate
mRNA splicing and regulate transcription factors [small
nuclear RNA (snRNA)] (4,5), alter cellular proliferation
and apoptosis (small interfering RNA) (6) and play a role
in infrastructural functions (tRNA and rRNA). Not sur-
prisingly, ncRNA have been implicated in human health
and disease (7).

NcRNA expression profile can serve as an initial step
for multiple sequence alignment-based phylogeny,
homology and conservation studies (8). It can also be
used for detecting RNA library preparation biases
such as failure in tRNA and rRNA filtration, or undesir-
able abundance of transcript degradation products.
Differential expression of several types of ncRNAs can
be of great value in a number of scientific fields such as:
assessment of viral infection (9), diagnosis and prognosis
of different tumor types (10), analysis of neurological dis-
orders (11) and directing personalized medicine (12).
Up till recently, the most common tool for ncRNA

expression analysis was either custom-designed micro-
arrays (13) or tiling microarrays (14). The use of ‘deep
sequencing’ technology (15) (also known as ‘next gener-
ation sequencing’) to infer transcript expression levels is
becoming increasingly common in molecular and clinical
laboratories. For the purpose of exploring the diverse
world of ncRNAs, deep sequencing has many advantages.
Deep sequencing improves the sensitivity and specificity
above microarray techniques (16,17) and allows the iden-
tification of novel ncRNA transcripts (18). Moreover,
sequencing does not require any prior knowledge of the
actual transcript sequence, and any relevant database can
be utilized in order to compare and characterize the
sequence population (19).
The massive amount of data produced by deep

sequencing requires several computational analysis pro-
cedures. These stages can be performed by employing a
variety of tools that process and analyze the data.
However, these tools necessitate the user to be familiar
with Linux command lines and programming data
manipulation. There are currently several available tools
that reduce the need for computer savvy expertise when
looking at ncRNAs. Tools such as DSAP (20) and
miRTools (21) utilize Rfam, an open access database con-
taining information about all known ncRNA families (22)
in order to characterize the sample. However, differential
expression analysis is performed only on miRNA and
the amount of uploaded data is limited. Tools like
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miRExpress (23) and miRNAkey (19) allow data analysis
on a local computer, but these are dedicated for miRNA
analysis, skipping the potential information encompassed
in the entire spectrum of ncRNA transcripts.
We developed a software termed RandA (ncRNA

Read-and-Analyze), which performs comprehensive
ncRNA expression profiling and differential expression
analysis on deep sequencing data while running on a
local computer (operated by a Linux operating system).
RandA has a user-friendly graphical interface (avoiding
the requirement for command lines) which allows the
user to analyze and compare several samples using a
pre-defined set of ncRNAs from Rfam. We demonstrate
the fidelity of RandA by comparing its analysis to pub-
lished data and by experimentally verifying its differen-
tially expressed ncRNAs. We then use RandA to reveal
the complexity of the ncRNA repertoire in a given
pathogen infected cell population. RandA is available
for download at http://ibis.tau.ac.il/RandA.

MATERIALS AND METHODS

RandA software pipeline

RandA is free-access software with a graphical user inter-
face that carries through the essential steps in ncRNA
analysis after the acquisition of deep sequencing data.
The workflow of the tool is divided into three main
sections:

(i) Input and Output: the user should choose one or
more deep sequencing read files for analysis. For
each sequenced sample, the user assigns a condition
name, allowing several samples to be assigned under
the same condition (technical/biological replicates).
Reads deriving from short RNA transcripts (e.g.
miRNA) will usually include the adapter sequence
in addition to the transcript sequence. By utilizing
ea-utils’ fastq-mcf tool (http://code.google.com/p/
ea-utils/wiki/FastqMcf) RandA allows the user to
clip this adapter sequence from the 30 ends of the
reads. RandA can also trim bases from the 30 end of
each sequence read if their quality is below a user
defined threshold. Finally, RandA will filter out
reads that were reduced to less than a set number
of bases by either the clipping or the quality
trimming.

(ii) Database preparation: for the purpose of ncRNA
alignment and subsequent annotation, we utilize
Rfam (v10.1), an extensive database of known
ncRNA. The database contains almost 200 000 dif-
ferent organisms, and >1 million unique sequences
for a variety of RNA species such as rRNA, tRNA,
miRNA, cis-regulatory elements, snRNA, snoRNA,
ribozymes and other documented non-coding tran-
scripts. Due to the high level of sequence diversity
and magnitude of Rfam, RandA allows the user to
perform a variety of manipulations, creating a novel
ad hoc database, specifically tailored according to
the relevant experimental needs. Further refining
of the database can be carried out by specifying

an organism(s) and RNA families, then collapsing
(joining) transcripts that are either identical in
sequence, or share the same description.

(iii) Analysis: RandA maps the reads against the newly
formed database (from Step 2, above) using a
Burrows–Wheeler transform based alignment tool
(24) summing the number of reads that mapped
uniquely to each of the annotated ncRNA
sequence. Due to the short read length produced
by deep sequencing platforms, and the sequence
similarity between the same family ncRNAs, a sig-
nificant amount of reads align to several different
reference transcripts and their respective isoforms.
Although these multiple aligned reads may add up
to >50% of the total amount of mapped reads (25),
they are usually excluded from the analysis, possibly
leading to a biased and misleading expression
profile. RandA introduces multiple hits handling
(reads mapped to more than one unique location
or RNA sequence on the reference library) by im-
plementing an expectation maximization-based algo-
rithm called SEQ-EM (26). SEQ-EM enables the
inclusion of these multiple hits in the transcripts’
final expression assessment, resulting in increased
accuracy and power.

The user may choose whether to continue and perform
differential expression between the given samples, or to
simply perform a transcript expression (read count)
profiling. If the user selects to perform only transcript
expression, RandA standardizes the number of reads
mapped to each transcript according to its length and
the initial total number of mapped reads in the sample
based on the ‘reads per kilo-base per million’ (RPKM)
method (27). The RandA will then output a count table
with the read count and RPKM for each of the given
samples. For the purpose of differential expression
analysis, RandA employs DESeq (28), an ‘R’-based tool
that performs differential expression analysis on deep
sequencing data, and utilizes a negative binomial distribu-
tion model for variance estimation. Prior to the analysis,
RandA reviews the number of samples assigned to each
condition and sets the appropriate input parameters to the
DESeq tool. Once finished, RandA outputs the differen-
tial expression analysis results combined with additional
transcript-specific links.

All through the workflow, RandA generates a compre-
hensive summary including clipping, alignment and dif-
ferential expression (summaries and plots), depicting
multiple alignments and post-clipping read length
distribution.

Sample preparation for deep sequencing

SupT1 cells (human Caucasian lymphoma T cells) were
infected with human immunodeficiency virus (HIV1,
HXB2 strain) and Mycoplasma hyorhinis. Eight days
post-infection cells were harvested, total RNA was
extracted using TRIzol (Invitrogen) and 10 mg of each
sample were prepared for deep sequencing following
Illumina’s Small RNA sample preparation protocol
(v1.5). During this process, samples were ligated with
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30 and 50 adapters, reverse-transcribed and then amplified
using a PCR. Libraries of cDNA were prepared from
�100 bp PCR products (representing �25 nt RNA mol-
ecules) and sequenced in separate lanes on an Illumina
Genome Analyzer IIx instrument at the Tel Aviv
University Genome High-Throughput Sequencing
Laboratory.

Real time PCR

Real time PCR was carried out on the same RNA
samples. One microgram of RNA was used to generate
cDNA using the TaqMan MicroRNA Reverse
Transcription Kit and Megaplex RT Pools (Applied
Biosystems) in a final volume of 7.5 mL, according to the
manufacturer’s instructions. Six microliters of the reverse
transcription reaction were used for real time PCR in a
volume of 900 mL containing TaqMan Universal PCR
Master Mix and TaqMan Low Density Arrays (TLDA)
arrays (Applied Biosystems). U6 RNA was used as refer-
ence. Reactions were run on an Applied Biosystems
7900HT Fast Real-Time PCR System. Normalization of
the results was done by reducing the cycle threshold (Ct)
of each miRNA from the average Cts of four U6-snRNA
replicates in each of the TLDAs. For each miRNA, the
normalized Ct in HIV-infected TLDA was reduced from
the normalized Ct in the non-infected one. Relative
quantity (RQ) is calculated by 2 exponent the remainder
from the last step.

RESULTS AND DISCUSSION

RandA produces a table comprising of all the mapped
ncRNAs in a given sample. The output includes either
expression profiles sorted from most to least expressed
or differential expression between selected sample pairs.
This enables the user to prioritize the massive amount of
data and to focus on the most relevant ones. The output
includes the: Rfam accession; RNA type; number of
mapped reads for each condition; normalized count
(RPKM); fold change; derived P-value (chi-square test)
and the corrected P-value. For runs with multiple

samples where DESeq (28) is implemented a normalized
base mean count is given for each condition instead of the
actual read count.
We demonstrate the applicability of RandA using small

RNA samples taken from two human T cell cultures, one
co-infected by both Mycoplasma and human immunodefi-
ciency virus (HIV) and one uninfected [henceforth referred
to as the ‘infected’ and ‘uninfected’ samples respectively;
see Methods and (29)]. Each sample (condition) was run
twice on the deep sequencer. The database was set to
include all non-coding transcripts derived from either
Homo sapiens or bacteria. Other organisms were
excluded. The newly generated database entailed 793 118
transcripts out of the original 2 756 313 registered in
Rfam. Since Rfam transcript annotation is highly exten-
sive, identical sequences might appear under different ac-
cession numbers. Therefore, RandA enables the user to
reduce possible redundancy by collapsing transcripts
either based on sequence or description identity (each
might fit a different experimental question). Collapsing
the combined human and bacteria database by sequence
identity resulted in 394 240 unique sequences, a 50%
reduction.
The sequence reads were clipped and aligned against the

ad hoc novel database. The alignment resulted in 88% and
54% of the mapped reads’ unique alignment to the
database in the uninfected and infected samples, respect-
ively. The remaining reads that mapped to multiple loca-
tions were distributed using the inherent SEQ-EM
algorithm (26) to produce a new read count for each tran-
script. The counts in each deep sequencing run for both
conditions were analyzed using the DESeq tool, to
produce a table describing the difference in expression
between mapped transcripts (Table 1).

Mycoplasma ncRNA transcript expression

Using RandA, we demonstrated that expression of
Mycoplasma derived transcripts was indeed significantly
different between samples. These transcripts were highly
expressed in the infected sample in opposition to the
uninfected sample in which they were not detected.

Table 1. Ten most differently expressed RNA transcripts in our experiment

RNA accession RNA description Organism Base
mean 1

Base
mean 2

Fold
change

Adjusted
P-value

AK292330.1/1-191 U2 spliceosomal RNA H. sapiens (human) 1.4 10384.93 7418.416 1.46 E-30
AE017243.1/178458-178387 tRNA Mycoplasma

hyopneumoniae J
4.55 8283.43 1820.685 1.62 E-29

ABBA01175726.1/642-527 microRNA mir-689 H. sapiens (human) 5.375 3934.62 732.047 7.13 E-28
ABSL01060990.1/9336-9469 U11 spliceosomal RNA H. sapiens (human) 1.584 4291.48 2709.088 5.27 E-27
AE017332.1/337236-337309 tRNA M. hyopneumoniae 232 0.508 2095.19 4121.295 2.12 E-24
AADD01000927.1/23641-23760 U5 spliceosomal RNA H. sapiens (human) 24.439 1749.02 71.566 1.60 E-22
AE017332.1/830793-830880 tRNA M. hyopneumoniae 232 0.35 1572.03 4491.901 1.70 E-22
AADB02010034.1/410071-410401 7SK RNA H. sapiens (human) 6.51 1665.87 255.914 4.19 E-22
EU714234.1/1-1496 Bacterial small subunit

ribosomal RNA
M. hyorhinis 1.4 980.26 700.25 4.02 E-21

AK292656.1/2-181 U11 spliceosomal RNA H. sapiens (human) 0.35 1082.40 3092.831 3.16 E-20

This table is a partial representation of the output table produced by RandA. Base mean 1 and 2 represent the normalized read count mean for each
condition, namely uninfected and infected, respectively.
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The analysis resulted in 2748 different RNA transcripts
detected in at least one of the samples. Out of these, 273
transcripts exhibited significantly different expression
(P< 0.01), of which 148 had a base mean count of over
100. Of these 148 transcripts, 121 were human transcripts,
24 Mycoplasma and only 3 from other bacterial sequences
(Figure 1).

Human ncRNA transcript profile during HIV infection

Running RandA with a defined database which includes
viral transcript sequences did not result in any
HIV-related ncRNA transcripts (data not shown),
despite its presence in the samples. This might be due to
the scarcity of HIV-related sequences in the sample tested
or the shortage of these in the Rfam database. Yet, we
asked whether the profile of the human ncRNA tran-
scripts in the infected sample can demonstrate features
that strongly support an HIV infection (Figure 2). When
focusing only on the miRNA transcripts in both samples,
we noticed a substantial decrease in expression in a large
proportion of miRNAs (96%) demonstrating a significant
down-regulation in miRNA levels compared to other
ncRNAs (Fisher’s exact test; P< 0.0001; Figure 3). This
was confirmed by real time PCR on the six most signifi-
cantly differentially expressed miRNAs (P< 0.0001) that

are found in both Rfam and in the commercial real time
PCR array used (Table 2). The decreased miRNA expres-
sion in HIV infected human cells coincides with previously
reported studies (30–32) and can be attributed to the sus-
pected Dicer-suppressive effect exerted by HIV-1 Tat
protein and/or TAR RNA (33). We further examined
the most significantly decreased miRNAs [using
DIANA-mirPath (34)] and observed a noteworthy enrich-
ment (P< 0.001) of miRNA-targeted genes in the mitogen
activated protein kinase (MAPK) pathway. The MAPK
pathway modulates and induces HIV infectivity (35–37).
Thus, we speculate that this decrease in MAPK pathway
genes-targeting miRNAs could serve as a viral mechanism
to induce pathway activity and subsequent increased in-
fectivity. This requires further experimental validation.
MiRNA expression was not the only ncRNA group that
changed after infection. We identified an enrichment of
spliceosomal RNAs in the infected versus non-infected
samples (Fisher’s exact test; P< 0.01; Figure 3). Since

Figure 2. Distribution of human RNA transcripts in the uninfected (A) and infected (B) samples. The chart includes only transcripts with a base
mean of more than 20. The various ncRNA types demonstrate variable relative expression which can be partly attributed to the HIV infection.
This stresses the importance of a comprehensive ncRNA transcriptome overview to achieve an accurate sample assessment.

Figure 3. ncRNA transcript expression in the uninfected versus the
infected samples (Base mean 1 and Base mean 2, respectively). This
figure demonstrates the reduction of miRNA expression (red) and the
induction of splicosomal RNA expression (blue) when inspecting the
significantly different transcripts (non-gray; P< 0.01).

Figure 1. Distribution of organisms when running the deep sequencing
output against all human transcripts combined with all bacterial tran-
scripts. Abundance of Mycoplasma derived sequences within the most
differentially expressed transcripts (P< 0.01) with a base mean of over
100 demonstrates its’ presence in the infected sample. Mycoplasma
infection was previously validated (29).
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HIV is known to disrupt the process of splicosome
assembly in the nucleus (38,39), enrichment of such
spliceosomal RNA fragments might support the presence
of HIV in the infected samples. This could be a direct
spliceosomal outcome or via changing the stability of
splicing factors. Again, further experimentation is
required for validation. Finally, 7SK RNA demonstrated
a significant increase in expression in the infected sample
(fold change >200; P< 4 �e�22), suggesting a cellular
antiviral defense mechanism given its reported disruption
of HIV transcription (40).

ncRNA expression analysis following EBV infection

We further demonstrate the utility of RandA for ncRNA
transcript analysis by application to publicly available
data from a deep sequencing experiment in which
Epstein Barr virus (EBV) infected human cells were
sequenced [accession number SRA010803.5;(9)]. In this
work, Hutzinger et al. sequenced a specialized cDNA
library, comprising of EBV encoded ncRNAs and host
EBV-induced ncRNAs. Sequence reads were computa-
tionally analyzed using an assortment of alignment tools
and ncRNA databases. Using RandA we preformed the
same essential analysis steps. Briefly, all samples were
clipped and trimmed by quality threshold of 30. The
reads were then aligned against an RandA generated
database comprising of all the human and EBV-related

ncRNA transcripts. Reads mapping to multiple tran-
scripts were incorporated to the transcript count by the
SEQ-EM algorithm. The sequences were mapped to 334
different known ncRNA transcripts (as opposed to 274
detected by Hutzinger et al.). Comparison of the
ncRNA transcript type composition derived from each
method demonstrated high similarity between the two
(R2=0.81; Figure 4). In order to perform ncRNA differ-
ential expression analysis on EBV-infected and uninfected
samples, Hutzinger et al. generated a custom-designed
ncRNA-microchip. In this context of ncRNA transcript
differential expression we have demonstrated that RandA
is highly applicable and thus we suggest implementing a
combination of deep sequencing and RandA analysis as
an alternative to microchip-based methods.
In summary, utilizing RandA, we were able to compre-

hensively examine the ncRNA transcriptome and provide
a broad perspective on transcript expression. We show a
multitude of ncRNA shifts in pathogen-infected samples
exemplifying the value of this type of analysis during
cellular processes.

ACKNOWLEDGEMENTS

The authors thank Tel Aviv University Genome
High-Throughput Sequencing Laboratory staff, Drs
Varda Oron-Karni, Orly Yaron and Nitzan Kol, for
their dedicated and professional work. Authors also
thank Dr Eran Halperin and Dr Bogdan Pasaniuc for
technical assistance. This work was performed in partial
fulfillment of the requirements for a Ph.D. degree of O.I.
at the Sackler Faculty of Medicine, Tel Aviv University.

FUNDING

Chief Scientist Office, Ministry of Health, Israel; Israel
Cancer Association and the Wolfson family Charitable
Fund (to The Shomron Laboratory); I-CORE Program
of the Planning and Budgeting Committee; The Israel
Science Foundation (grant number 41/11); Fellowship
from the Edmond J. Safra Bioinformatics program at
Tel-Aviv University (to O.I.). Funding for open access
charge: Chief Scientist Office, Ministry of Health, Israel.
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Table 2. Six most significantly down-regulated miRNAs detected by

both RandA and real time PCR in our experiments

miRNA RandA fold
change

P-value Real time
PCR RQ

mir-342 0.113 1.01 E-08 0.398
mir-423 0.145 4.05 E-07 2.19 E-05
mir-197 0.138 5.11 E-07 0.459
mir-92 0.177 1.66 E-05 0.419
let-7 0.245 1.12 E-04 1.23 E-03
mir-101 0.244 6.43 E-04 1.93 E-04

The table describes the fold change between uninfected and infected
samples as detected by RandA with its corresponding P-value, and
the relative quantification (RQ; see Methods) between samples as
detected by real time PCR.
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