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ABSTRACT

Revolutionary DNA sequencing technology has
enabled affordable genome sequencing for
numerous species. Thousands of species already
have completely decoded genomes, and tens of
thousands more are in progress. Naturally, parallel
expansion of the functional parts list library is
anticipated, yet genome-level understanding of
function also requires maps of functional relation-
ships, such as functional protein networks. Such
networks have been constructed for many
sequenced species including common model organ-
isms. Nevertheless, the majority of species with
sequenced genomes still have no protein network
models available. Moreover, biologists might want
to obtain protein networks for their species of
interest on completion of the genome projects.
Therefore, there is high demand for accessible
means to automatically construct genome-scale
protein networks based on sequence information
from genome projects only. Here, we present a
public web server, JiffyNet, specifically designed to
instantly construct genome-scale protein networks
based on associalogs (functional associations
transferred from a template network by orthology)
for a query species with only protein sequences
provided. Assessment of the networks by JiffyNet
demonstrated generally high predictive ability for
pathway annotations. Furthermore, JiffyNet
provides network visualization and analysis pages
for wide variety of molecular concepts to facilitate
network-guided hypothesis generation. JiffyNet is
freely accessible at http://www.jiffynet.org.

INTRODUCTION

With advanced DNA sequencing and genome assembly
technology, >4000 completely decoded genomes have
already been deposited in public databases as reported by
Genome Online Database (http://www.genomesonline.org)

of January 2013. This already impressive number has
recently been growing even faster due to the revolution in
next-generation sequencing technology. The same database
also reported �15000 more genome projects in progress;
thus tens of thousands of completely sequenced species will
be publicly available in the next few years. In addition,
biologists recently set a new goal of sequencing genomes
for 10000 vertebrate species (Genome 10K Project, http://
genome10k.soe.ucsc.edu/), and 5000 insect and related
arthropod species (i5k initiative) in next 5 years (1).
Sequence analysis algorithms can deliver fairly accurate
gene or protein models, thus providing functional parts
lists for numerous species along with their sequenced
genomes. However, system-level functional understanding
of organism traits also requires maps of functional relation-
ships between the molecular parts, such as genome-scale
protein networks (2).

Experimental approaches for constructing genome-scale
protein networks are expensive and time-consuming.
Consequently, only few model organisms have been
tackled by genome-wide screens for protein interactions
to date. In contrast, computational approaches have
proven efficient for modeling relationships between
proteins in many species. For example, if two proteins
interact in one species, the orthologous pair of proteins in
other species is also likely to interact. The protein inter-
action inferred by orthology has been coined interolog
(orthologous interaction) (3), and this approach has been
adapted to construct protein networks for many species,
particularly for those that lack experimentally determined
protein interactions. The basic concept of interolog has
been extended to functional association, where if two
proteins are functionally associated in a species, their
orthologous proteins in other species are also likely to as-
sociate, and the inferred association is dubbed ‘associalog’
(orthologous association) (4). Because two proteins may
operate in the same pathways with no physical interaction,
many functional associations are not necessarily supported
by physical interactions. Therefore, protein networks based
on functional associations are generally more complete
than those based on physical interactions.

The algorithmic simplicity of orthology-based inference
of protein relationships may allow automating the whole
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process of network construction. Biologists may lack the
required skills and knowledge in network biology, but still
want to obtain protein networks for their species of
interest on completion of genome sequencing. Therefore,
we developed JiffyNet, a web-based automated pipeline of
orthology-based network modeling of newly sequenced
species. The quality of orthology-based networks is
largely determined by accuracy as well as completeness
of the template networks, from which associalogs for the
new network are inferred. JiffyNet uses highly accurate
genome-scale template protein networks, compiled from
various independent lines of evidence using Bayesian stat-
istics framework (5,6). The current version of JiffyNet
provides template networks for six diverse species,
spanning from Escherichia coli to human.

The template networks in JiffyNet provide an edge
weight score (likelihood of functional association),
facilitating robust hypothesis generation using ‘‘guilt-by-
association’’ principles. We retain the robustness of prob-
abilistic edge scores by combining likelihood scores of
template network edges with orthology-related scores.
For further functional interrogation of the query species
protein network, JiffyNet also provides subnetwork visu-
alization and analysis pages for wide variety of molecular
concepts (7) by Gene Ontology (GO) (8) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
(9) definitions.

BIANA Interolog Prediction Server (BIPS, http://sbi.
imim.es/BIPS.php) is another public webserver capable
of conducting orthology-based network modeling (10).
However, JiffyNet substantially differs from BIPS as
follows: (i) JiffyNet was specifically designed to infer
whole protein networks, whereas BIPS deduces individual
protein–protein interactions; (ii) JiffyNet is based on
associalogs, whereas BIPS is based on interologs; (iii)
JiffyNet uses genome-scale protein networks as template
relationship sets unlike BIPS, which uses all protein–
protein interactions derived from multiple public data-
bases; (iv) JiffyNet provides confident scores for inferred
network edges not available from BIPS; and (v) JiffyNet
provides network visualization and analysis services
absent from BIPS.

DESCRIPTION OF JIFFYNET

JiffyNet builds protein networks using associalogs
(Figure 1a) based on template networks made of func-
tional associations between proteins. Network edge repre-
sentation by functional perspectives enhances network
completeness because its broad definition of relationship
includes diverse types of molecular interactions other than
just physical interaction (5). Indeed, all the template
networks of JiffyNet cover large portions of the
template species coding genomes (Table 1) and potentially
do so for query species.

The overall process implemented in the JiffyNet system
is summarized in Figure 1b. The current version of
JiffyNet is based on six template networks from species
of bacteria, fungi, animals and plants: EcoliNet (unpub-
lished version), YeastNet (11), WormNet (12), HumanNet

(13), AraNet (14) and RiceNet (15) for E. coli,
Saccharomyces cerevisiae, Caenorhabditis elegans, Homo
sapiens, Arabidopsis thaliana and Oryza sativa, respectively
(Table 1). The quality of the template networks has been
demonstrated by various computational as well as experi-
mental validations as previously reported. We recommend
users select the template species closely related to their
query species. For example, EcoliNet is recommended
for bacteria, YeastNet for fungi, WormNet or
HumanNet for animals and AraNet or RiceNet for plants.
JiffyNet requires input protein sequences of a query

species as a FASTA file. After uploading an input
sequence file and selecting an appropriate template
network, the user starts the automated network construc-
tion process by clicking ‘SEND’ button. In this step, the
user may also submit an optional email address if email
notification is preferred on completion of the submitted
job. The action of query submission prompts a new
message page showing an assigned ‘Query ID’. The user
needs to bookmark this page or copy the Query ID to
check status of the submitted job or access the final
results later. Due to the generally long calculation time
for ortholog mapping, submitted queries may take up to
several days to finish, particularly between templates and
query species with a large number of proteins. Rice, for
example, has >40 000 protein coding genes. A table listing
estimates of the computational time required for a given
query is available on the tutorial page of the JiffyNet web
server. Moreover, the capacity of the current JiffyNet
server is running up to five queries at a time. Thus, one
may need to wait for next available service in queue. For
such situations, JiffyNet allows users to check status
(Queued, Running or Finished) of jobs in the middle of
processes.
JiffyNet first maps orthologous relationships between

all input query proteins and all proteins of the selected
template species using the INPARANOID algorithm
(http://inparanoid.sbc.su.se) (16). This algorithm enables
highly sensitive ortholog mapping by considering recent
paralogs (inparalogs) as co-orthologs. Compared with
other algorithms, INPARANOID best achieves the
optimal balance between sensitivity and specificity (17).
The edge weight score, or log likelihood score (LLS) (5),

of the template networks is the log-scaled likelihood of
functional association between two linked proteins. If
the likelihood equals the value expected due to chance
alone, the LLS will be zero. By contrast, if the LLS is
four, the likelihood that two proteins associate with one
another is �55 times higher than the value expected by
chance alone. The LLSs of template networks are
transferred to their corresponding associalogs in the
networks being constructed, after adjustment by the
inparalog score. The inparalog score reflects the relative
similarity of a protein to its two-way best-hit ortholog and
ranges from zero to one, where one indicates the
maximum likelihood of orthology. The adjusted LLS for
associalog is calculated by the following equation:

LLS (A0-B0)=LLS (A-B)+ln(inparalog score of
A-A0)+ln(inparalog score of B-B0),
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where A and B are template species proteins and A0 and B0

are their orthologs in the query species. Thus, if either
orthologous relationship (A-A0 or B-B0) is weak, the
LLS for the associalog between query proteins (A0-B0) is
down-weighted. Many associalogs turned out to have like-
lihood scores below random expectation (i.e. LLS< 0)
after downward adjustment by inparalog scores, and

the JiffyNet system excludes all associalogs with LLS
<0 from the final output networks. The edge file of the
output network for a query species is downloadable from
the ‘Check Status’ and ‘Results and Analysis’ pages.

Genome-scale protein networks facilitate hypothesis
generation by using network topology. Splitting an
output query genome-scale network into subnetworks
for individual molecular concepts, defined by annotation
of template species orthologs, is perhaps an effective
approach to exploring functionally uncharacterized
proteins of query species. JiffyNet allows users to visualize
and analyze subnetworks for each GO or KEGG term
using the ‘Results and Analysis’ page (Figure 2). The
network visualization function was implemented using
Cytoscape web (18). Each network node exhibits both a
query species protein name and a template species protein
name. In each subnetwork of molecular concepts, query
proteins with a large number of within-concept neighbors
(i.e. hubs) may be more meaningful proteins for the
molecular concept. Thus, JiffyNet also provides a list of
subnetwork proteins ranked by total weighted within-
concept connectivity (i.e. sum of LLS).

BENCHMARKING

The quality of the protein networks predicted by JiffyNet
was assessed using (i) HumanNet and WormNet-based
giant panda (Ailuropoda melanoleuca) protein networks
(Figure 3a) and (ii) AraNet- and RiceNet-based soybean
(Glycine max) protein networks (Figure 3b). We chose
these species for assessment because their genome-scale
protein network models would be proposed for the first
time by JiffyNet. In addition, these species have been
annotated by the KEGG pathway database, which
provides independent test data for the network assess-
ment. A total of 631 933 positive pairs and 13 543 217
negative pairs were used for assessing giant panda
networks, and 463 223 positive pairs and 13 111 432
negative pairs were used for assessing soybean networks.
We compared the quality of the orthology-based networks
by JiffyNet and BIPS, another public web server capable
of constructing orthology-based protein networks (10),
using identical query protein sequence input data. The
BIPS web server differs substantially from JiffyNet as
described above.

Plots of KEGG pathway precision as a function of
coding genome coverage demonstrate that the full-sized
qualified networks constructed using JiffyNet cover a
large portion of the coding genome (40–75% and
35–40%, respectively, for giant panda and soybean). In
terms of precision and coverage for KEGG pathway
annotations, BIPS-generated networks fall short of
JiffyNet-generated networks for both panda and
soybean (Figure 3a and b upper panels). As predicted,
HumanNet was more effective than WormNet when
using JiffyNet to construct the panda protein network.
Pandas are more closely related to humans than worms,
and humans harbor more panda orthologs (13 053) than
worms do (6781). By contrast, when constructing the
soybean protein network, AraNet and RiceNet proved

Figure 1. (a) Illustration of associalog, which is an inferred functional
association between protein A0 and B0 in a query species. A0 and B0 are
orthologs of template species protein A and B, respectively.
(b) Schematic summary of network construction and analysis processes
implemented in JiffyNet web server.

Table 1. Template networks for the JiffyNet webserver

Template network Template
species

No. of proteins
(coverage of
coding genome)

No. of
functional
associations

EcoliNet (draft version) E. coli 4117 (99%) 120 510
YeastNet (version 2) S. cerevisiae 5483 (95%) 102 803
WormNet (version 2) C. elegans 15 139 (75%) 999 367
HumanNet (version 1) H. sapiens 16 242 (87%) 476 399
AraNet (version 1) A. thaliana 19 647 (73%) 1 062 222
RiceNet (version 1) O. sativa 18 377 (45%) 588 221
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to be similarly effective templates. Soybean is more closely
related to Arabidopsis than rice, yet Arabidopsis has fewer
soybean orthologs (20 817) than rice does (23 711). On the
basis of these findings, we concluded that the effectiveness
of JiffyNet is affected by not only the evolutionary
distance between the template and query species but also
the number of orthologs present in the template species.

For panda, the BIPS network of protein pairs sharing
GO terms achieves higher precision (29.7%), but at the
cost of low-coding genome coverage (7.8%) compared
with full-size network (17.9% of precision for 39.9% of
coding genome coverage). Notably, the higher quality
panda protein network from BIPS covers only 7.8% of
the coding genome, while the JiffyNet network of equal
precision covers 39.6%, showing a 5-fold difference. The
performance difference between JiffyNet and BIPS is even
more dramatic in soybean. A higher quality BIPS network
(precision is 31.5%) covers <0.35% of the soybean coding
genome, while the JiffyNet one with an equal level of pre-
cision covers 15.6%, indicating almost 45-fold difference.

We also assessed how well each network recovered
KEGG pathway proteins using area under Receiver

Operating Characteristic curve (AUC), a convenient
summary statistic for connectivity among member
proteins of each pathway (19). For this analysis, we con-
sidered only 114 and 238 KEGG pathway terms with no
less than five member proteins for soybean and panda,
respectively. As shown in Figure 3a and b lower panels,
the distribution of the JiffyNet AUC scores outperforms
BIPS in both query species. The performance of JiffyNet
for soybean is particularly remarkable compared with the
random-level performance of BIPS. This catastrophic
failure of BIPS is probably due to the lack of template
protein–protein interactions for plants in current public
databases.
We also validated the quality of networks generated by

JiffyNet using a well-known species: rice. We previously
published a high-quality protein network for rice,
RiceNet, which was constructed by integrating 24 differ-
ent types of datasets (15) and is a template network for
JiffyNet. As shown in Figure 3c, an AraNet-based
network for rice (rice-Jiffy-AraNet) is of lower quality
than a RiceNet, but the two are still somewhat compar-
able. A total of 153 152 positive pairs and 4 240 978

Figure 2. Visualization and analysis of subnetworks for molecular concepts. The ‘Results and Analysis’ page provides two links, one for a list of
subnetworks by GO terms and the other by KEGG pathway terms. The linked page for GO terms lists all available terms in multiple pages (the
given example has 35 pages of GO term list). These terms can be filtered for each category of GO annotation (BP for biological process, CC for
cellular component or MF for molecular function). One can use keywords to search for terms of interest. For example, the keyword p53 lists up to
five GO terms containing the word. Clicking linked term ‘p53 binding’ opens a new page showing a subnetwork for the molecular concept of ‘p53
binding’. Each node shows both the template and query species protein names for a pair of orthologs. The user can specify different confidence levels
for edges by using the slider bar for ‘LLS threshold.’ Using viewer tools, one can zoom in or out and move the network or individual nodes. The
linked page also shows a list of subnetwork proteins ranked by sum of LLS scores.
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negative pairs of KEGG pathway genes were used for as-
sessing rice networks with precision and coverage analysis.
For AUC analysis, we considered 113 KEGG pathway
terms for rice with no less than five member proteins.
The precisions for 10% coverage of the coding genome
are �26% for rice-Jiffy-AraNet and �32% for RiceNet,
a difference of roughly 20%. Moreover, the median AUC
for rice-Jiffy-AraNet is 0.77, a level of predictability that is
considered high. Similar to the results for soybean, BIPS
generated networks covering no more than 0.5% of the
rice coding genome. In an earlier study, the quality of an
orthology-based network for rice was supported by
another line of evidence: co-expression of linked proteins
across cell types (15). In a study of 40 cell types, the

likelihood of shared expression between linked proteins
was much higher than what would be expected by
chance alone in AraNet-based rice protein network (20).

CONCLUSION

JiffyNet is a free web server for biologists who wish to
construct genome-scale protein networks for their species
of interest using only protein sequence data. This task is
practically achievable using highly accurate genome-scale
template protein networks along with a robust and sensi-
tive orthology mapping algorithm. The procedure for
network construction using JiffyNet does not require
any advanced bioinformatics skills. In addition, JiffyNet

Figure 3. Quality assessment of protein networks for (a) giant panda (A.melanoleuca), (b) soybean (G. max) and (c) rice (O. sativa). Graphs of
KEGG pathway precision as a function of coding genome coverage (upper panels) and the AUC for KEGG pathways (lower panels) are shown. In
the upper panel plots, each data point represents a bin of 1000 network links, sorted by likelihood score. AUC scores are summarized as box-and-
whisker plots. We created networks using JiffyNet by selecting HumanNet and WormNet as template networks for panda (panda-Jiffy-HumanNet
and panda-Jiffy-WormNet, respectively), AraNet and RiceNet for soybean (soybean-Jiffy-AraNet and soybean-Jiffy-RiceNet, respectively) and
AraNet for rice (rice-Jiffy-AraNet). For comparison purposes, we show networks generated for the same species using the BIPS, which creates
networks on the basis of protein–protein interactions between orthologs in other species. In addition, we used BIPS to define core networks by
identifying protein pairs that share GO annotations (panda-BIPS-core, soybean-BIPS-core and rice-BIPS-core). For panda, HumanNet was a more
effective template than WormNet and covered a larger portion of the panda coding genome (75%). For soybean, AraNet and RiceNet were similarly
effective templates, and the resultant networks covered 35–40% of coding genome. For the giant panda network, median AUC scores were 0.803 and
0.681, respectively, using the HumanNet and WormNet templates. For soybean, AUC scores were 0.708 and 0.702 using the AraNet and RiceNet
templates, respectively. An AUC of 0.5 is expected if results are due to chance alone. We also compared JiffyNet results for rice (rice-Jiffy-AraNet) to
a high-quality protein network constructed by integrating 24 different types of datasets (RiceNet).
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provides network visualization and analysis pages for a
wide variety of molecular concepts, which are often
major targets for functional investigations. Therefore,
JiffyNet provides a feasible solution for instant network
modeling of newly sequenced species. We expect continual
growth in usability of JiffyNet as more template networks
are added in the future.
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