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ABSTRACT

To identify non-coding RNA (ncRNA) signals within
genomic regions, a classification tool was developed
based on a hybrid random forest (RF) with a logis-
tic regression model to efficiently discriminate short
ncRNA sequences as well as long complex ncRNA
sequences. This RF-based classifier was trained on
a well-balanced dataset with a discriminative set of
features and achieved an accuracy, sensitivity and
specificity of 92.11%, 90.7% and 93.5%, respectively.
The selected feature set includes a new proposed
feature, SCORE. This feature is generated based
on a logistic regression function that combines five
significant features––structure, sequence, modular-
ity, structural robustness and coding potential––to
enable improved characterization of long ncRNA
(lncRNA) elements. The use of SCORE improved the
performance of the RF-based classifier in the iden-
tification of Rfam lncRNA families. A genome-wide
ncRNA classification framework was applied to a
wide variety of organisms, with an emphasis on those
of economic, social, public health, environmental and
agricultural significance, such as various bacteria
genomes, the Arthrospira (Spirulina) genome, and
rice and human genomic regions. Our framework
was able to identify known ncRNAs with sensitivities
of greater than 90% and 77.7% for prokaryotic and

eukaryotic sequences, respectively. Our classifier is
available at http://ncrna-pred.com/HLRF.htm.

INTRODUCTION

Non-coding RNAs (ncRNAs) are involved in a variety of
important biological functions in the cell, including the con-
trol of chromosome dynamics, RNA splicing, RNA editing,
translational inhibition and mRNA destruction (1). ncR-
NAs have recently been acknowledged to be diverse and sig-
nificantly more important than previously thought (2–3). In
human transcriptome analysis, >70% of the human genome
is likely transcribed into ncRNAs, whereas protein-coding
transcripts account for only ∼2–3% of the genome (4–
6). NcRNAs can be roughly classified into short ncRNAs
(such as microRNA (miRNAs), short-interfering RNAs
(siRNAs), piwi-interacting RNAs (piRNAs), small nucleo-
lar RNAs (snoRNAs), and short hairpin RNAs (shRNAs))
or long ncRNAs (lncRNAs), depending on the transcript
size (3,7–9). Short ncRNAs are shorter than 200 nucleotides
(nt), while lncRNAs are longer than 200 nt (10). LncRNAs
can range in size from 200 to 100 000 nt (3,11). In con-
trast to well-studied short ncRNAs such as miRNAs and
snoRNAs, lncRNAs are relatively uncharacterized, but ac-
cumulating evidence indicates that they likely have a broad
range of functions (7–9,12). lncRNAs have been proposed
to constitute the major fraction of eukaryotic transcrip-
tomes; the transcriptome is involved in the regulation of
many important cellular processes as well as the epige-
netic control of complex mechanisms (5,13). Dysfunctions
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of lncRNAs have been associated with various diseases, in-
cluding cancers, cardiovascular diseases and neurodegener-
ative diseases (14–16). The range of ncRNAs is expanding
rapidly as new ncRNAs continue to be discovered via high-
throughput sequencing. However, a large number of ncR-
NAs likely remain to be identified (1,17). Thus, the identi-
fication and annotation of ncRNAs are important steps for
the elucidation of various regulatory mechanisms in the cell.

Current experimental methods have yielded promising re-
sults but are subject to certain limitations. The expression of
most ncRNAs is lower than that of mRNAs, and ncRNAs
display tissue/stage-specific expression patterns (1,18,19).
Moreover, high-throughput sequencing causes enormous
informatics, and requires extensive computational analysis
(15). Thus, computational identification methods may com-
plement experimental methods to quickly identify ncRNAs
in new genomes, particularly ncRNAs that are transcribed
under specific conditions in specific cell types. Various com-
putational methods have been proposed to predict ncRNAs,
including comparative (20–23) and non-comparative meth-
ods (24–31).

Most ncRNA identification algorithms are designed to
identify structural ncRNAs based on low-energy structures.
However, the use of secondary structure feature alone is
generally not sufficiently statistically robust enough to de-
tect all types of ncRNA (32) because a random RNA with
high GC content can also fold into a low-energy structure.
Computational methods utilizing thermodynamic stability
structure features have successfully identified highly struc-
tured ncRNAs such as tRNAs, snoRNAs and miRNAs but
cannot identify less densely structured classes of ncRNAs,
such as lncRNAs (11). LncRNAs share some features with
protein-coding genes: they can be spliced, 5′-capped and/or
polyadenylated (13). However, unlike protein-coding genes,
lncRNAs are generally expressed at low levels and lack
strong evolutionary conservation across species compared
to protein-coding sequences and small RNAs (e.g. miR-
NAs and snoRNAs). To identify lncRNAs, ncRNA gene
identification method must incorporate other signal fea-
tures that can be used to characterize lncRNAs. The recog-
nition of a wide range of ncRNAs that exhibit heterogeneity
among different species and different ncRNA families re-
mains computationally challenging. In addition, some ncR-
NAs have weak structure signals.

In this work, we developed a generalized classifier for
ncRNAs based on an ensemble of multiple decision trees, a
random forest (RF), to discriminate ncRNAs from genomic
sequences. Due to the complex and heterogeneous nature of
ncRNAs, the classification of ncRNAs based on structures
or sequences may not be appropriate. To classify ncRNAs
efficiently, we take into account various characteristics of
the ncRNAs (such as modularity elements, structural ro-
bustness scores, base-pair features, sequence compositions
and structural features). We hypothesized that certain com-
binations of significant features would improve the charac-
terization of heterogeneous ncRNAs. Thus, we propose a
new composite feature based on a logistic regression model,
SCORE, to increase the sensitivity of the RF prediction. We
used our framework to scan for ncRNAs in a wide range of
genomes, including both bacterial and eukaryotic genomes.

In particular, we focused on genomes of economic, social,
public health, environmental and agricultural importance.

MATERIALS AND METHODS

Dataset

Two training datasets were used: training 1 and training 2.
The training 1 dataset was composed of all ncRNA seed
alignment sequences obtained from the Rfam database,
version 11.0 (33). The positive data were randomly se-
lected from 32 300 ncRNAs from various organisms. Then,
ncRNA sequences shorter than 50 nt were excluded, and
CD-HIT (34) was used to eliminate redundant sequences
with sequence similarities above 80%. Thus, the positive
data consisted of 6649 non-redundant sequences. The neg-
ative data included RefSeq (35) coding sequences and shuf-
fled sequences of both coding and ncRNA sequences. A
set of 2147 non-redundant coding sequences was extracted
from the coding region sequences of human RefSeq genes,
and these were used to validate the lack of annotated or
unannotated ncRNA sequences. A set of 4502 shuffled se-
quences obtained from 2147 coding and 2355 non-coding
sequences was shuffled while preserving both the mono- and
di-nucleotide frequencies. The balance between the number
of positive and negative training sets was maintained be-
cause an imbalanced distribution could affect the perfor-
mance of the classifier. The training 2 dataset included all
lncRNAs obtained from the lncRNAdb database (36), a
comprehensive database of lncRNAs, as the positive train-
ing data. The negative training data were randomly selected
from the negative samples of the training 1 dataset.

To verify the results, genomic data for the follow-
ing species were downloaded from the NCBI Gen-
Bank genome database (ftp://ftp.ncbi.nih.gov/genomes/):
Escherichia coli K12 (U00096), Acholeplasma laidlawii PG-
8A (CP000896), Acidovorax sp. JS42 (CP000539), Bru-
cella suis 1330 Chromosome (chr.) 1 (AE014291), Candi-
datus methanoregula boonei 6A8 (CP000780), Oryza sativa
japonica chr.1 (CM000138), Arthrospira (Spirulina) platen-
sis NIES-39 (AP011615), Penaeus monodon mitochondrial
genome (AF217843), Mycobacterium tuberculosis H37Rv
(AL123456), Pseudomonas aeruginosa (CP000438) and
Homo sapiens genomic regions containing ncRNAs. These
genomes and genomic regions were used to test the method.
For each of the test genomes, with the exception of the A.
platensis and P. monodon mitochondrial genomes, sets of
known ncRNAs were downloaded from the Rfam database
version 11.0 in generic feature format. The files were then
parsed to retrieve the start and end positions of all types
of ncRNAs in the test genomes. For H. sapiens, we ex-
tracted five regions containing known ncRNAs: (i) five
known lncRNAs (GNAS AS1 1–5) in the 57 417 000–57
426 000 bp region of chr. 20; (ii) nine known miRNAs in the
49 767 700–49 779 500 bp region of chr. X; (iii) six known
lncRNAs (MAT2A A-F) in the 85 770 900–85 772 300 bp
region of chr. 2; (iv) five known lncRNAs (HOTAIRM1 1–
5) in the 27 135 000–27 139 900 bp region of chr. 7; and
(v) six known lncRNAs (HOXA11 AS1 1–6) in the 27 225
000–27 228 900 bp region of chr. 7. Furthermore, north-
ern blot verified ncRNA candidates from the literature (37)

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/42/11/e93/1432461 by guest on 20 M

arch 2024

ftp://ftp.ncbi.nih.gov/genomes/


PAGE 3 OF 12 Nucleic Acids Research, 2014, Vol. 42, No. 11 e93

were used to test the ability of the proposed method for the
identification of novel ncRNAs.

Features

Various types of features were extracted that could be
important for ncRNA prediction. In total, 369 features
were considered in this work, which can be divided into
five categories, as summarized in Table 1. Descriptions of
the features are listed in the Supplementary Material and
Method 1.

Feature selection

Due to the large number of features, which may include re-
dundant features, a feature selection process is needed to
filter out irrelevant, redundant and uninformative features
and select only the most informative set for ncRNAs iden-
tification. In this work, correlation-based feature selection
(CFS) (38) and a genetic algorithm (GA) search method
were used to select the discriminative feature subset. The
CFS+GA combination has been used for pre-miRNA data
to yield a compact feature subset and an improvement in
performance (31). The CFS+GA method selected a feature
subset with the highest merit criterion, and the combination
of those features exhibited good predictive power in ncRNA
identification. A set of 20 features from the 369 ncRNA fea-
tures was selected as the discriminatory set by CFS+GA, in-
cluding Prob, zG, SC score, SCxdP, Bits, CM score, Bits2,
SCORE, AAAA, AGGA, CAAC, CAGU, CUAC, CUGA,
GAUA, GCAU, GUUC, UAAG, UACA and UUUU. To
visualize the spread of the training data 1 for each selected
feature, graphical boxplots are shown in Figure 1.

Logistic regression model

A logistic regression model (39) was used to define the com-
plex relationships among important characteristic factors
and to describe the ncRNA elements in the lncRNAs. The
model was trained with training set 2. A combination of fea-
tures was used to fit a logistic regression model represented
by the following equation:

P(Y = ncRNA|X) = logistic(X) =
eβ0+β1 X1+β2 X2+···+βn Xn

1 + eβ0+β1 X1+β2 X2+···+βn Xn
.

In this study, the logit transformation (the logarithm of
the odds ratio or likelihood ratio) was used for the link func-
tion with logistic regression. The logit function, referred to
as the SCORE feature, is defined as

SCORE = logit(X) = log
(

X
1 − X

)
=

log
(

P(Y = ncRNA|X = X)
P(Y = other|X = X)

)

= β0 + β1 X1 + β2 X2 + · · · + βn Xn,

where β i represents the regression coefficient of the ex-
planatory variable Xi. The logistic regression model was im-
plemented by using the generalized linear model (GLM)
function in R (40). We used GLM to describe a function
of related factors to predict the possibility that a sequence
was lncRNA. We defined all relevant features that might
be involved in predicting lncRNAs, and ANOVA tests were
used to identify the statistically significant features asso-
ciated with lncRNAs. Various regression models were ex-
plored, and the optimal model was validated based on a 10-
fold cross validation. A stepwise forward variable selection
was used to select the significant factors based on their p-
values.

The logistic model was based on five significant fea-
tures: sequence similarity (Bits), structural motif similar-
ity (CM score), modularity sequence profile score (Bits2),
coding potential (logodds) and structural robustness score
(SCxabsZG). These features were included in the logistic
function to describe the lncRNAs because they are statisti-
cally significant based on the Wald test (p < 0.001). The se-
quence similarity is a Bit score obtained from BLAST (Ba-
sic Local Alignment Search Tool) (41). Bits2 is a modular
sequence similarity obtained from BLAST search against
the modularity sequence profile database. To build the mod-
ularity sequence profile database, we collected the modular-
ity pivot sequences from Rfam seed alignment by search-
ing for portions of common RNA sequences in long non-
coding alignments and curating them as custom libraries for
BLAST. CM score is an RNA secondary structure similar-
ity score obtained by using infernal (42) to search against
the covariance models (CM) (43), which are RNA sec-
ondary profiles from a custom modular CM library. In
brief, our modular CM database was created in three steps:
(i) manual extraction of the critical conserved substructures
from selected lncRNA seed alignments and CM model con-
struction, (ii) searches for short motifs RNA in the Rfam
seed alignments using CMfinder (44) and CM model con-
struction, and (iii) scans for and removal of redundant mod-
els. The structural robustness score was the product of a
self-containment (SC) score (45) and the absolute value of
the z-score (zG) (46). The coding potential based-feature
(logodds) was extracted from the framefinder s/w (47,48)
to identify the longest reading frame in the three forward
frames of the sequences. Finally, the logistic model was used
as a composite feature to discriminate between lncRNAs
and other sequences in the machine learning (ML) model.
All analyses were performed in the R statistical environment
(40).

Machine learning algorithms

We trained an RF as the main classifier. An RF is an en-
semble method that uses decision trees as its base classifiers
(49,50). Each of the individual decision trees was trained
on a random subset of the total features to maximize the
classification criteria at each node, and the different clas-
sification hypothesis trees were then combined to form the
ensemble (51,52). The predictions of the RF model repre-
sent a consensus of the predictions made by all of the indi-
vidual trees. We used Weka (53) and the randomForest R
package (40,51) with 10 trees (ntree = 10), and 5 randomly
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Table 1. Summary of the 369 ncRNA features

Feature group No. of features Feature symbol

Sequence-based features 277 %G+C,% A+U,%AA,%AC,%AG,%AU,%CA,%CC,%CG,%CU,%GA,%GC,
%GG,%GU,%UA,%UC,%UG,%UU,%AAAA -%UUUU (256 of 4-Mer), Bl
ast bits score (Bits), Modular Bits (Bits2), Coding Potential (logodds)

Secondary structure features 23 MFE, efe, MFEI1, MFEI2, MFEI3, MFEI4, dG, dQ, dD, dF, Prob, zG, zQ,
zD, zF, nefe, Freq, diff, dH, dS, Tm, CM score (CM), SCORE

Base-pair features 28 dP, zP, div, tot bp, stem, loop, A-U/L, G-U/L,
G-C/L,%A-U/Stem,%G-C/Stem,%G-U/Stem, Probpair1–10, Avg PP,
NonBP A, NonBP C, NonBP G, NonBP U, Non BPP

Triplet sequence-structure 32 A(((, A((., A(.., A(.(,A.((,A.(.,A..(, A. . . , C(((, C((., C(.., C(.(, C.((, C.(., C..(,
C. . . , G(((, G((., G(.., G(.(, G.((, G.(., G..(, U. . . , U(((, U((., U(.., U(.(, U.((, U.(.,
U..(, U. . .

Structural robustness
features (SC-derived features)

9 SC, SCxMFE/Mean dG, SCxdP, SCxabsZG, SC/(1-dP), SC/NonBP A,
SC/NonBP C, SC/NonBP G, SC/NonBP U

Total 369

Figure 1. Boxplots showing the spread of the training data for each of the 20 selected features: Prob, zG, SC score, SCxdP, Bits, CM score, Bits2, SCORE,
AAAA, AGGA, CAAC, CAGU, CUAC, CUGA, GAUA, GCAU, GUUC, UAAG, UACA and UUUU. For each plot, the left side represents the ncRNA
class, and the right side represents other classes.

sampled features as candidates at each split (mtry = 5). De-
tailed implementation of other ML methods was used in
this work, including Naı̈ve Bayes (NB), support vector ma-
chine (SVM), K-nearest neighbors (kNN), neural network
(MLP), decision tree (DT), rule induction (RIPPER) and
RF. The algorithm selection procedure is described in the
Supplementary Material and Method 2.

Classification framework for ncRNAs

The process of computational ncRNA gene identification
is illustrated in Figure 2. The input was a sequence of any

length, preferably with a size between 75 and 200 nt. For the
entire genome, a sliding window module was used to split
the genome into multiple overlapping sub-sequences with a
size of 120 nt and a step of 40 nt. A window size of 120 nt,
as used in RNAz (21) screens, is an appropriate input size
because it is large enough to detect most ncRNAs, ranging
from small ncRNAs to at least a substructure of a lncRNA
(43). The window size was primarily tested and trained as
the performance was optimized (data not shown). In the
next step, a feature extraction module was used to extract
the 20 most informative features from each input sequence.
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Figure 2. Process of computational ncRNA gene prediction.

In the final step, the trained RF classifier was used to clas-
sify the input sequences.

Performance assessment

To precisely evaluate the predictive power of our classifi-
cation model, several standard performance measures were
used:

Accuracy(ACC) =
TP + TN

TP + TN + FP + FN
Sensitivity(Sn) = TP

TP + FN

Positive Predictive Value(PPV) =
TP

TP + FP
Specificity(Sp) = TN

TN + FP

False Positive Rate(FPR) =

1 − Specificity = FP
TN + FP

.

We evaluated the area under the ROC curve (AUC), in
which the sensitivity is plotted as a function of the false pos-
itive rate (FPR) at different decision thresholds. A greater
AUC value indicates a better classification result. In case
of genome screening, False Discovery Rate (FDR) was cal-
culated using the same approach as previously described in
(29), which involves steps in calculating FPR in the shuffled
genome. The shuffling method ensured that all unknown
ncRNAs located within the genome were fragmented (30).

Figure 3. ROC curves showing the performances of the classifiers in 10-
fold cross validation.

RESULTS AND DISCUSSION

Predictive power of the newly proposed model

The performances of ML algorithms usually depends on
the task to which they are applied. Different algorithms are
able to take advantage of different characteristics and rela-
tionships in a given dataset, and thus we constructed seven
classifiers based on seven algorithms trained on the same
training data and the same features and evaluated their per-
formances using 10-fold cross validation (see the Algorithm
selection in the Supplementary Method 2). The RF method
outperformed the six other techniques for the prediction of
ncRNAs. To visualize the performance of the difference al-
gorithms, ROC curves were plotted (Figure 3). On average,
RF yielded the highest AUC (of 0.972), which reflects a bet-
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ter balance compared to the other algorithms. The better
performance of RF could be due to the robustness provided
by the bootstrap aggregating (bagging) technique and the
random feature selection process for building the ensem-
ble of the DT model. Our data included a broad range of
ncRNA families; thus, RF is more suitable than other meth-
ods because the heterogeneity of the ncRNA subfamilies
can be captured by an ensemble of trees.

To assess the overall sensitivity of our RF method
for screening previously annotated ncRNAs in various
prokaryotic genomes, we began with E. coli because it is a
well-studied prokaryotic model organism (with a genome
size of 4 686 137 nt and 265 known ncRNA families) and
has been previously used as a test genome for several de
novo ncRNA prediction methods (24–26). A neural network
(NN)-based method (24) outperforms all other reported
methods when applied to the E. coli genome. Therefore, we
compared the genome-wide performance of our method in
identifying known ncRNAs in E. coli to that of NN (24).
Our RF model performed significantly better than NN in
terms of both sensitivity and specificity for identifying ncR-
NAs on both strands of the E. coli genome (Table 2).

We also performed an independent test to compare the
prediction performance of our method with the perfor-
mances of two recently developed approaches that used
SVMs: smyRNA (29) and ncRNAscout (30). The smyRNA
method uses primary sequence motif features to detect ncR-
NAs, and the ncRNAscout uses both a primary sequence
motif and secondary structure-based features for ncRNA
discovery. The results of these methods for various compact
microbial genomes with varying lengths and %GC contents
are summarized in Table 3. Our RF-based method per-
formed very well in identifying well-characterized, previ-
ously annotated ncRNAs with a broad range of GC con-
tents and nucleotide lengths.

The high FPR is another important aspect of computa-
tional ncRNA identification in genomes. It is impossible
to calculate the FPR in real genomes because knowledge
about ncRNAs is incomplete, and real genome sequences
may contain some unknown novel ncRNAs. Thus, to eval-
uate the FDR, a shuffled genome was used to ensure that all
unknown ncRNAs in the genome were broken up (29,30).
An FDR of 16.9% was achieved by our method for the de-
tection of known ncRNAs in the shuffled Acidovorax sp.
JS42 genome, which indicates that the model can discrimi-
nate real ncRNAs from shuffled genomic sequences.

Newly proposed feature improving prediction accuracy of our
model

To determine which features play the most important roles
in prediction, we plotted the importance of each variable
based on permutation and gini criteria. The RF method
provides the importance of each feature measure, which is
called the relative variable importance. As shown in Fig-
ure 4, the SCORE feature ranked as the top discriminative
feature, demonstrating the effectiveness of this feature for
ncRNA identification. However, it has been suggested that
the importance of an RF variable may be misleading if it is
biased toward variables with many categories and continu-
ous predictor variables (54,55). A revised RF model (cfor-

est) based on conditional inference trees using subsampling
without replacement has been proposed to provide a more
reliable measure of variable importance. Thus, a conditional
feature importance strategy was also plotted by using the
cforest function (56) as shown in Supplementary Figure S1.
The revised RF variable importance was in agreement with
the original RF variable importance.

Different features are useful for identifying different
classes of ncRNAs; thus the integration of multiple types
of data can improve the sensitivity of computational meth-
ods for ncRNA identification (57). To address the diver-
sity in ncRNA families, our feature selection method se-
lected various types of features: sequence, structure, mod-
ularity, robustness and composite features. Sequence- and
structure-based features are used extensively for ncRNA
identification, including features such as MFE, zG (a struc-
ture or thermodynamic stability-based feature) and k-
mer (a sequence-based feature). However, these commonly
used features are not sufficiently general to encompass all
ncRNA families. For example, algorithms that use only
thermodynamic stability appear to have an advantage in de-
tecting simple hairpin structural RNAs (58). Certain RNA
families do indeed exhibit thermodynamic stability. How-
ever, this concept cannot be applied to all ncRNA families
(46,59). Some features, such as nucleotide composition (k-
mer), have been used with some success for ncRNA gene
prediction (e.g. in smyRNA and ncRNAscout). A statis-
tically significant signal based on CG content can be ap-
plied restrictively in AT-rich hyper-thermophiles (60–63).
However, these sequence features are limited to compact
bacterial organisms with base-composition biases, and their
associated signals are generally insufficient for generalized
ncRNA gene identification in most organisms (58).

To address the diversity in ncRNA families, our selected
feature subset was composed of various complementary
features that could enhance RF performance by capturing
most possible aspects of heterogeneity in ncRNAs. These
different features are useful for identifying different types
of ncRNAs. For example, the CM score is advantageous
for identifying ncRNAs with a high degree of conserva-
tion in sequence and structure. The BLAST score is advan-
tageous for identifying ncRNAs with a high degree of se-
quence similarity. For example, SRP RNAs, U5 RNAs and
U3 RNAs are well conserved at the sequence level (64). The
SC score or SC feature is advantageous for the detection of
pre-miRNAs, which have high structural robustness and re-
main stable through two cleavage steps during their biogen-
esis (45). The pre-miRNAs generally exhibit a greater SC
value, between 0.85 and 0.98. Moreover, pre-miRNAs are
also anticipated to have higher SCxdP values compared to
other ncRNA sequences (31). The Prob and zG features are
useful for identifying ncRNAs with high thermodynamic
stability. However, some classes of ncRNAs appear to be
more difficult to detect than others (58), such as those with
complex structural and highly variable lncRNAs. lncRNAs
lack strong conservation (only 5% of lncRNA bases are
evolutionarily constrained (8,17)) because they consist of
multiple short regions that possess functional modules. The
distinct modules of lncRNAs, which have a variety of sec-
ondary structure elements, interact with proteins, DNAs or
RNAs to achieve specific regulatory outcomes (9–10,65–
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Table 2. Performance comparison of our prediction method and the neural network (NN) method (24) for identifying known ncRNAs on both strands
of the E. coli genome

Algorithm Strand Prediction performance measurement

Sensitivity Specificity FPR

NN (24) + 0.72 0.66 0.34
Our model (RF) + 0.89 0.86 0.14
NN (24) − 0.65 0.73 0.27
Our model (RF) − 0.93 0.87 0.13

Table 3. ncRNAs detected in four genomes: Acholeplasma laidlawii PG-8A (CP000896), Acidovorax sp. JS42 (CP000539), Brucella suis 1330 Chromosome
(chr.) 1 (AE014291) and Candidatus methanoregula boonei 6A8 (CP000780)

Genome
source

Nucleotide
length (nt)

GC content
(%) Based on Rfam 10 Based on Rfam 11

No. of
known
ncRNAs Detected known ncRNAs (%)

No. of
known
ncRNAs

Detected by our
model (%)

ncRNA
scout smyRNA Our model

A. laidlawii
PG-8A

1 496 992 31.92 42 92.857 95.238 95.238 64 96.875

Acidovorax
sp. JS42

4 448 856 66.17 134 96.269 70.149 97.015 181 95.580

B. suis 1330
chromo-
some1

2 107 794 57.21 49 89.796 71.429 100 63 93.650

C.
methanoreg-
ula boonei
6A8

2 542 943 54.51 23 73.913 56.522 100 40 97.500

Our method was compared to ncRNAscout (30) and smyRNA (29).

67). Thus, we captured the functional elements of lncR-
NAs in most possible ways by combining the power and ad-
vantages of various significant features: sequence, structure,
robustness, coding potential and modular characteristics.
RNA structural motifs are building blocks of the complex
RNA architecture, and the recurrence of RNA structural
motifs implies their high modularity and functional impor-
tance (10,68). On this basis, we hypothesized that lncR-
NAs containing various sequences and structural elements
could be captured by scoring for these modular sequences
and structural motifs. We generated the database contain-
ing various motifs, both structural and sequence-based (see
the Materials and Methods section for more details). Fur-
thermore, we hypothesized that certain combinations of sig-
nificant features can reliably distinguish ncRNA elements
from other sequences. To combine unrelated features with
different scales, a unified statistical framework was needed.
Therefore, we developed a scoring scheme based on the
logistic regression function of the five significant features
and used this scheme to discriminate lncRNA elements
from other sequences. We generated several feature compo-
sition models based on LDA (Linear Discriminant Anal-
ysis), PCA (Principal Component Analysis) and LR (Lo-
gistic Regression) techniques and compared them by 10-
fold cross validation. Based on their performances, we de-
fined the logistic regression model as a composite feature,
SCORE, because the method has a higher AUC compared
to other techniques (R-squared = 0.7258, AUC = 0.9015).
Moreover, logistic regression is relatively robust and eas-

ily updated, and allows meaningful interpretation. It is a
hypothesis-driven model that can provide more useful in-
formation for ncRNA identification.

To examine the spread of SCORE values in the train-
ing data and compare to the well-known MFE feature, we
plotted boxplots and histograms using rattle (69) in R. As
shown in Figure 5, a significant difference was observed be-
tween ncRNAs and other classes in the SCORE feature.
To explore whether the SCORE feature is able to capture
lncRNA elements and improve the performance of the clas-
sifier, we compared the lncRNA prediction results obtained
with our model framework with and without the SCORE
feature. We randomly selected 10 lncRNA families from the
Rfam database and used them as testing data. The perfor-
mances of the model with and without the SCORE feature
are compared in Table 4. These results provide preliminary
evidence to support our hypothesis that the SCORE fea-
ture facilitates the identification of lncRNA regions. Table
4 shows that both of our RF frameworks successfully re-
covered most of the lncRNAs. In terms of sensitivity, the
results suggest that our RF model can be applied generally
to lncRNA elements. Moreover, these results indicate that
our features can be used effectively in ML models to detect
lncRNAs.

Genome-wide screen performance

We used our framework to scan for ncRNAs in a wide range
of genomes (Table 5). To identify known annotated ncR-
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Figure 4. The variable importance based on the RF method (randomforest package). Left: permutation importance. The RF algorithm estimates the
importance of a variable based on the increases in prediction error when the out-of-bag (OOB) error for that variable is permuted while all others are left
unchanged. Right: gini importance. The RF algorithm estimates the decrease in impurity in the splitting criterion produced by each variable.

Figure 5. (A) and (B) The boxplots illustrate the spread of the training 2 dataset for the MFE feature (left) and the SCORE feature (right). The y-axis
shows the values of the feature, and the x-axis shows the class of data. (C) and (D) Histogram plots of the MFE and SCORE features.

NAs in bacterial genomes, we used M. tuberculosis H37Rv
and P. aeruginosa PA14 as testing genomes. Our frame-
work was able to identify known ncRNAs with a sensitivity
of >90%.

Earlier methods have been applied to various prokaryotic
genomes, but we wanted to test the ability of our method to
identify lncRNAs and miRNAs, which are usually found
in higher eukaryotes. Therefore, we obtained the following
eukaryotic sequences from GenBank: O. sativa (chr.1) ge-

nomic sequence and five H. sapiens genomic regions (Re-
gion1: the 57 417 000–57 426 000 bp of chr. 20; Region2:
the 49 767 700–49 779 500 bp of chr. x; Region3: the 85 770
900–85 772 300 bp of chr.2; Region4: the 27 135 000–27 139
900 bp of chr. 7; Region5: the 27 225 000–27 228 900 bp of
chr. 7). Our framework also correctly identified most of the
known ncRNAs in the eukaryotic genomic regions, with a
sensitivity of >77%.
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Table 4. Performance comparison of the model with and without the SCORE feature for detecting various Rfam lncRNA regions

Rfam Description
No. of
sequences No. of correctly predicted sequences (%)

with SCORE without SCORE

RF01890 LincRNA-p21 conserved region 2 10 9 (90) 6 (60)
RF01905 HOTAIR intron conserved region2 68 65 (95.5) 62 (91.2)
RF01909 CDKN2B antisense RNA1 intronic

conserved region
59 59 (100.0) 59 (100)

RF01977 HOX antisense intergenic RNA myeloid
conserved 3

76 74 (97.3) 68 (89.5)

RF02090 DAOA antisense RNA1 conserved region 1 66 58 (87.8) 50 (75.7)
RF02124 JPX transcript, XIST activator conserved

region 1
78 71 (91.0) 63 (80.8)

RF02132 HOXB13 antisense RNA 1 conserved
region 1

53 50 (94.3) 49 (92.5)

RF02138 HOXA11 antisense RNA 1 conserved
region 2

83 81 (97.5) 78 (93.9)

RF02143 Hydatidiform mole associated and imprint
region

56 53 (94.6) 48 (85.7)

RF02148 MEST intronic transcript 1 51 49 (96.1) 47 (92.2)

Table 5. Performance of our model in a genome-wide screen

Genome Strand Sensitivity accuracy

Mycobacterium tuberculosis H37Rv (AL123456.2) + 90.7%
Mycobacterium tuberculosis H37Rv (AL123456.2) − 91.9%
Pseudomonas aeruginosa PA14 (CP000438.1) + 97.5%
Pseudomonas aeruginosa PA14 (CP000438.1) − 94.3%
Oryza sativa, Japonica, chromosome 1 (CM000138.1) + 92.3%
Oryza sativa, Japonica, chromosome 1 (CM000138.1) − 86.5%
Homo sapiens 1 (Containing five known lncRNAs: GNAS AS-1-5) + 80% (4/5)
Homo sapiens 2 (Containing nine known miRNAs) + 77.7% (7/9)
Homo sapiens 3 (Containing six known lncRNAs: MAT2A A-F) + 83.3% (5/6)
Homo sapiens 4 (Containing five known lncRNAs: HOTAIRM1 1-5) + 100% (5/5)
Homo sapiens 5 (Containing six known lncRNAs: HOXA11 AS1 1-6) + 83.3% (5/6)
Arthrospira platensis NIES-39 (AP011615.1, region: 1–1 200 000) + 413a

Penaeus monodon mitochondria (AF217843) + 39a

aNeed to be experimentally verified.

Table 6. Performance of our model in detecting unknown verified ncRNAs in P. aeruginosa PA14

Regulatory class of sRNAs No. of sRNAs

Tested candidates Detected by our method

I intergenic sRNAs 19 17
II 5′-UTR sRNAs 10 9
III asRNAs 19 14
IV intergenic contains CRISPR 1 1
V 3′-UTR sRNAs 3 3
Total 52 44 (84.6%)

The tool was also evaluated for its ability to identify pu-
tative ncRNA candidates in unannotated genomes based
on known ncRNA databases (33,70,71). The P. monodon
mitochondria and the A. platensis genomes were used for
testing. The model framework was applied to the A. platen-
sis genome (NC 016640.1, genomic region: 1–1 200 000 nt;
strand +) and 413 putative ncRNA candidates were iden-
tified and reported (results are shown in the Supplemen-
tary data 1). A total of 49 putative ncRNA candidates were
identified as ncRNAs with high confidence (>0.85 Confi-
dence, highlighted in bold in the Supplementary data 1). We
also clustered the putative ncRNA candidates with Rfam
sequences using RNAClust (72) and compared them to
Rfam CM to suggest their putative functions via sequence-

structure homology. The RNAClust (72) and Locarna (73)
pipelines were used to detect similarity to Rfam sequences
based on sequence-structure similarity (clustering trees pro-
vided upon request). To achieve maximal sensitivity with
our method, the screening should be repeated with differ-
ent window sizes. Consistent with a previous study (74), we
also suggest using three different sizes of sliding windows
(one short, 55–100 nt; one long, 125–200 nt; and one in-
termediate, 120 nt) to increase sensitivity because ncRNAs
vary in size and structure.
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Performance with unknown ncRNAs

To verify that our method has the ability to detect novel
unknown ncRNAs in addition to known ncRNAs in the
database, 52 sRNA candidates (in bacteria, the regulatory
RNAs are called ncRNAs or sRNAs) validated by north-
ern blot (37) were used. These candidate sequences have
not been submitted to the current Rfam (ver.11). These test
data are completely independent from the training data and
are not part of our training dataset. To test the ability of
our method to detect unknown ncRNAs, we obtained the
genome sequence of PA14 from GenBank (accession num-
ber CP000438.1) and used our method to identify sRNAs in
its genome. The prediction results were compared with the
experimental sRNA identification data (37), as summarized
in Table 6. The sRNA candidates were classified according
to functional/structural categories for regulatory RNA in
bacteria (75): Class I represents trans-encoded or intergenic
RNAs; Class II represents 5′-untranslated region (5′-UTR)
sense RNAs; Class III represents antisense RNAs (asR-
NAs) or cis-encoded; Class IV represents intergenic con-
taining CRISPR (Clustered Regularly Interspaced Short
Palindromic Repeats)-like array; and Class V represents 3′-
untranslated region (3′-UTR) sense RNAs.

Our approach was able to predict various types of sRNA
transcripts derived from 3′-UTR or 5′-UTR sense regions,
antisense regions and intergenic regions. Most of the missed
predictions were in the ‘antisense sRNA’ class (five of eight
missed). This result is consistent with an earlier study
(76) that addressed the observation that computational ap-
proaches are likely to focus on identifying ncRNAs in inter-
genic regions and are likely to miss small RNAs expressed
from the non-coding strands of known genes and small
RNAs of <50 nt. In addition, asRNAs may function mainly
by complementing the coding sequences rather than being
expressed as a specific sequence and/or structure-based fea-
ture (77). Moreover, our method depends on the fixed size of
a sliding window (120 nt). As discussed earlier, to increase
the overall sensitivity of the framework, multiple sizes of
sliding windows are desirable. However, the high sensitivity
of multiple sliding windows comes at the expense of com-
putational time. We demonstrate here that our method can
also detect novel ncRNA candidates. In contrast to the se-
quences used in the preceding section, these sRNA candi-
dates appear to represent unannotated novel ncRNA genes
identified by our tool. Taken together, we have demon-
strated that our framework, in combination with the se-
lected discriminating features, can identify both known and
unknown ncRNAs.

CONCLUSION

We describe a hybrid method that uses a logistic regres-
sion model as a composite feature in an RF-based classi-
fier model to detect various ncRNAs. The RF model has
the advantage of robustness due to a bagging process and
random selection of features to build the ensemble of trees.
Moreover, the RF method can cope with the heteroge-
neous characteristics of diverse ncRNAs because its algo-
rithm combines multiple decision trees with multiple classi-
fication rules. In addition to the robustness of the model,
the composite feature incorporated as a statistical model

in the RF-based classification method enhances the perfor-
mance of the model for identifying lncRNA elements. The
lncRNA is a challenging set of ncRNAs because of limited
knowledge of lncRNA characteristics. The ncRNA identifi-
cation framework proposed here exhibits high performance
not only in recognizing known ncRNAs in a wide range
of genomes but also in identifying novel ncRNAs in unan-
notated genomes. Both known and unknown ncRNAs can
be identified with high accuracy. However, our scheme has
some limitations. First, the size of the sliding window affects
the performance of the classifier. Second, because ncRNA
knowledge is limited, the framework may not be completely
accurate and may need to be further refined to incorporate
new ncRNA families. The logistic regression can be easily
updated to incorporate new data. This composite feature
may be improved in the future by using a non-linear combi-
nation of features based on a GA. We are also interested in
building various logistic regression models, including sep-
arate logistic regression models for long, intermediate and
short ncRNAs.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online, includ-
ing [77–86].
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