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ABSTRACT

The understanding of folding and function of RNA
molecules depends on the identification and clas-
sification of interactions between ribonucleotide
residues. We developed a new method named
ClaRNA for computational classification of contacts
in RNA 3D structures. Unique features of the pro-
gram are the ability to identify imperfect contacts
and to process coarse-grained models. Each dou-
blet of spatially close ribonucleotide residues in a
query structure is compared to clusters of reference
doublets obtained by analysis of a large number of
experimentally determined RNA structures, and as-
signed a score that describes its similarity to one
or more known types of contacts, including pairing,
stacking, base–phosphate and base–ribose interac-
tions. The accuracy of ClaRNA is 0.997 for canonical
base pairs, 0.983 for non-canonical pairs and 0.961
for stacking interactions. The generalized squared
correlation coefficient (GC2) for ClaRNA is 0.969 for
canonical base pairs, 0.638 for non-canonical pairs
and 0.824 for stacking interactions. The classifier can
be easily extended to include new types of spatial
relationships between pairs or larger assemblies of
nucleotide residues. ClaRNA is freely available via a
web server that includes an extensive set of tools
for processing and visualizing structural information
about RNA molecules.

INTRODUCTION

Like proteins, RNA molecules fold hierarchically in time
and space into complex 3D structures necessary for molecu-
lar function (1). When RNA molecules fold, ribonucleotide

residues form various interactions, including canonical (cis
Watson–Crick A-U and C-G) base pairs, ‘wobble’ G-U base
pairs, other types of nucleotide pairs, different types of base
stacking, as well as base–phosphate and base–ribose inter-
actions. The rapidly increasing number of experimentally
determined RNA structures revealed a wealth of local mo-
tifs that are formed by combinations of these interactions
and play specific functional roles (2–4). Therefore, under-
standing RNA structure and function depends heavily on
the identification and classification of interactions between
residues in RNA structures.

A number of computational methods have been devel-
oped to perform automatic assignment of residue pairs
from atomic coordinates of RNA 3D structures, based on
different criteria, e.g. MC-Annotate (5), RNAView (6) and
FR3D (7). In general, these methods exhibit a broad con-
sensus as to the location of canonical base pairs and stack-
ing interactions. However, they do not always agree about
non-canonical pairs and they differ in the assessment of
other types of interactions, e.g. those between the base and
ribose or phosphate moieties. Further, these methods have
been developed to analyze structures represented by full-
atom models and they are not appropriate for analyzing
models generated by coarse-grained methods that use re-
duced representations, e.g. for simulations of RNA folding.

In models of experimentally determined RNA structures
available in databases such as Protein Data Bank (PDB) (8),
not all interactions represent the ideal geometry in the ac-
tive in vitro and especially the in vivo context. In fact, there
is a ‘twilight zone’ of contacts, where the mutual orientation
of interacting residues departs significantly from that of ide-
alized structures. For such cases, one has to decide whether
the observed deviation is genuine (e.g. due to intramolecu-
lar strain), and could be functionally and structurally im-
portant (9), or if it represents a modeling error or lack of
resolution in the experimental structure due to motional av-
eraging or multiple conformations. Hence, it is important to
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detect not only perfect interactions, but also ‘near matches’
for further analyses and possibly refinement. This is particu-
larly important in modeling RNA structures with the use of
low-resolution or sparse data, where details of the geome-
try are not always discernible, as well as in purely theoretical
modeling that often produces models with globally correct
topologies, but with flawed local geometries (10).

To address these issues, we have developed a new method
called classification of contacts in RNA tertiary structures
(ClaRNA). It is predictive in nature, and is robust to coor-
dinate errors and can be used to define interactions even in
poorly refined and low-resolution RNA structures, includ-
ing coarse-grained representations that contain a reduced
representation of the number of atoms per residue. We com-
pared assignments made by ClaRNA with those given by
RNAView, MC-Annotate and FR3D, and we found that
our method agrees well with the consensus between the
other methods and has a relatively small fraction of assign-
ments that are not supported by other methods.

ClaRNA is also capable of identifying certain types of
interactions that are common in RNA structures, but are
not reported by other methods, and the method has been
developed in such a way as to easily include additional types
of interactions in the future.

Finally, our method provides valuable assignment of con-
tacts in RNA structures that can aid in model analysis and
refinement, and can be used for identification of recurrent
structural motifs, alignment of RNA 3D structures and
RNA model quality assessment.

MATERIALS AND METHODS

Classification of interactions using existing methods and
preparation of training and testing data sets

The Leontis group has provided exemplars (centroids)
of each type of base pair according to base combina-
tion (AA, GC, etc.) and base–pair type (WW-cis, HS-
trans, etc.), which are available at http://rna.bgsu.edu/main/
databases/#RNA Basepair Catalog. However, for some
base combinations/pairs, single examples are insufficient to
describe the diversity of geometries that fulfill the given in-
teraction type. Classifiers developed to date often have dif-
ferent scope (e.g. some focus just on ribonucleotide pairs
and pay less attention to stacking or base–phosphate in-
teractions, etc.). They also sometimes disagree with each
other even for the common classes such as different ribonu-
cleotide pairs. Thus, we extracted experimentally deter-
mined high-resolution structures of RNA molecules from
the PDB database, and carried out classification with sev-
eral existing methods to identify interactions that can be
clearly ascertained.

Atomic coordinates of 2432 macromolecular structures
containing RNA molecules were downloaded from the
PDB (8) (release date 16 November 2012). Structures solved
by X-ray crystallography at resolution 3.0 Å or better that
were released before 18 April 2012 (941 structures compris-
ing 300 913 ribonucleotide residues) were used to establish
the initial version of the training data set. The remaining
structures, including those solved by nuclear magnetic res-
onance, at lower resolution than 3.0 Å or released after 18

April 2012 (1491 structures comprising 1 077 316 ribonu-
cleotide residues) were used to establish the testing data set.
The lists of structures included in either data set are pro-
vided in Supplementary File S1 and the classification of
doublets according to the type of RNA structure is illus-
trated in Supplementary Figure S1.

For all structures we identified doublets of residues that
were close in space according to the definition used by Sykes
and Levitt (11), i.e. residues with at least one pair of non-
hydrogen atoms within a distance of 4.0 Å. In the down-
loaded structures only canonical ribonucleotide residues
(A, U, C, G) were retained and all modified residues and
non-RNA residues were ignored. We identified 804 580 dou-
blets in the training set and 2 756 404 doublets in the test-
ing set. Each doublet is uniquely described using its PDB
ID, chain ID, residue type and, additionally, the number of
the first residue and chain, residue type and the number of
second residue. For example 3B4B:A G7/B A35 denotes a
doublet from a PDB file 3B4B, with the first residue in chain
A, guanosine number 7, and the second residue in chain B,
adenosine number 35.

For assignment of pairwise interactions between ribonu-
cleotides in RNA structures, the following third-party clas-
sifiers were used: MC-Annotate (5), RNAView (6) and
FR3D (7). We also used the ModeRNA stacking detection
algorithm (12). The classifiers have been executed on the
entire structures (on the complete Asymmetric Unit con-
tents) from the above-mentioned data sets. We introduced a
common dictionary to relate classes used by different clas-
sifiers with each other (available as Online Material O7 at
http://iimcb.genesilico.pl/clarna/supp/).

The ribonucletide doublets are identified when they sat-
isfy one of the following criteria:

� The same or equivalent class of a residue pair was de-
tected by at least two methods among RNAView, MC-
Annotate and FR3D. For each combination of ribonu-
cleotides (e.g. A-A, A-G, A-U, etc.), we considered 12
classes of interaction pairs according to the nomencla-
ture proposed by Leontis and Westhof (13).

� The same or equivalent type of stacking interaction was
detected by at least two methods among MC-Annotate,
FR3D and ModeRNA (RNAView results were not taken
into account in identifying stacking interactions, because
this program does not report sub-classes of these con-
tacts). For each combination of ribonucleotides, we con-
sidered four types of stacking: 3′-5′ (>>), 5′-3′ (<<), 3′-3′
(><) and 5′-5′ (<>) defined by the RNA Ontology Con-
sortium (14).

� Base–phosphate and base–ribose interaction was de-
tected by FR3D. For each combination of ribonu-
cleotides, we considered 10 types of base–phosphate
(BPh) interactions as defined by (15). We added W and
H to the original cluster names to indicate interactions
of the Watson and Hoogsteen edge, respectively, with
the phosphate group. We also grouped together spatially
overlapping clusters W 3BPh,W 4BPh and W 5BPh into
a single class named W 345BPh, and in analogy we
grouped H 7BPh, H 8BPh and H 9BPh clusters into a
single class H 789BPh; see below. Base–ribose interac-
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tions were defined using the same method, according to
FR3D (7).

It must be emphasized that one residue can be present
in many doublets, and one doublet can be included in one
or more classes of interactions, e.g. two residues can be in-
volved in base–pairing and base–phosphate interactions at
the same time.

In the course of the development of the training data set,
doublets of the same chemical type (e.g. all G residues that
interact with C residues) were clustered according to geo-
metric similarity (based on location of C2, C4, C6 and C1′
atoms) using an in-house program (G. Chojnowski, unpub-
lished data). Major groups of spatially similar doublets were
then inspected by eye and analyzed in the context of the
aforementioned consensus annotations. They were manu-
ally curated to remove clear outliers that were apparently
misclassified (865 doublets total). A full list of removed
pairs is available at the ClaRNA web page (Online material
O6). After the manual curation, 430 809 doublets remained
to be considered in the training data set.

Some theoretically possible nucleotide pairs are very rare
or have not been found in structures deposited in the PDB.
For such cases we prepared artificial reference doublets by
comparative modeling, based on geometrically analogous
doublets comprising residues of a different chemical type.
Of course, it would be much better to have experimentally
determined reference structures. With the growing size of
RNA structure database, we intend to update ClaRNA pe-
riodically, especially with respect to those classes where the
number of reference pairs is low. The artificial reference
doublets were constructed by replacing the original bases
with the desired ones, followed by energy minimization us-
ing the AMBER force field (16), with restraints on planarity
of the purine and pyrimidine rings. These 100 additional ar-
tificial reference doublets were added to the final version of
the training data set (PDB files with additional doublets are
available as Online material O9). The final training data set
is available on the ClaRNA web page; it contains the list
of interaction classes, the respective number of doublets in
each class and the corresponding PDB files (Online mate-
rial O1, available for interactive browsing or for download
as a compressed ZIP file, 12 MB). Additionally, the list of
recognized classes accompanied with the exemplar doublets
is available in the Online material O2.

For the testing data set, types of interactions within dou-
blets were defined using the same consensus procedure as
in the initial step of development of the training data set.
However, no manual curation has been performed, to avoid
biasing the assessment of our classifier. The overview of the
ClaRNA preparation is presented in Figure 1.

ClaRNA classifier algorithm

The ClaRNA method classifies ribonucleoside interac-
tions in RNA 3D structures based on comparison to a
reference/training data set. A distinguishing feature of this
classifier, compared to the classifiers developed earlier (MC-
Annotate (5), RNAView (6) and FR3D (7)), is that it relies
on geometric matching rather than on detection of physical
interactions, such as hydrogen bonds. In particular, except

Figure 1. ClaRNA development workflow.

for the base–ribose and stacking interactions where meth-
ods similar to the ones used in MC-Annotate and FR3D
are used, base doublets are classified based on a direct com-
parison with exemplary doublets from a manually curated
reference database. Hence, ClaRNA can detect interactions
in RNA structures represented in a coarse-grained fashion
(e.g. it can detect tentative base pairing even in the structural
models that lack explicit representation of bases) or can sug-
gest ‘near matches’ in structural models that exhibit various
distortions. In other words, for each doublet of residues that
are spatially close, ClaRNA reports similarity to previously
defined classes of interactions. This feature makes ClaRNA
open to addition of new classes of interactions and spatial
relations of residues that may be defined in the future (see
below).

The classifier processes input files in four steps. First, the
PDB-formatted file is parsed using the BioPython library
(17). Geometry of each residue is analyzed, and in case of
missing atoms or non-planarity of the atoms in the base,
the residue is restored using idealized ribonucleotide bases.
This approach and the idealized ribonucleotide base models
were taken from FR3D (15). In the next step, the pairs of ri-
bonucleotide residues (doublets) with the smallest distance
between their non-hydrogen atoms below 4.0 Å are identi-
fied. The running time of this step is minimized by the use of
the KD-Trees data structure (18). KD-Trees is a data struc-
ture used to organize points in k-dimensional space into a
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hierarchical system of subgroups that vastly simplifies the
closest-neighbor searches. In the next step, doublets that are
likely to form one of the types of contacts present in the
training data set are identified based on the following pa-
rameters: (i) the angle between the base normal vectors (be-
low 65◦), (ii) the distance between base centers (between 4.0
and 8.5 Å), (iii) the smallest distance between non-hydrogen
atoms of the bases (between 0.1 and 3.2 Å) and (iv) the angle
between the base normal vector and the vector connecting
the base centers (between 50◦ and 140◦). Base doublets that
fulfill all of the above-given criteria are compared with the
entire set of representative doublets from each of the inter-
action classes (see Materials and Methods for the list of all
types of interactions). Depending on the level of similarity
of the query doublet to the closest reference doublet from
the training data set, an interaction is assigned a score in the
range from 0.0 to 1.0, where 1.0 corresponds to a perfect
match and all scores below 1 indicate imperfect matches.
A similar approach was introduced in the FR3D classifier,
which uses a similar set of parameters for classifying dou-
blets to particular interaction types. FR3D also reports near
matches (e.g. ncWW, which stands for near WW-cis), but
such matches are reported without a score, so nearly ideal
near matches are not discriminated from poor near matches.

We use different parameters (mapped onto [0:1] range us-
ing linear functions) to score the similarity of different in-
teraction types. The parameters, however, are always com-
puted based on the relative position of the second moiety
(base, ribose or sugar) after the optimal superposition of
the first base from the query and reference doublet. Since
we compare only bases of same type, the superposition is al-
ways unambiguous. We use the root mean square deviation
(RMSD) of the query and the reference base, ribose and
phosphate moieties to parameterize the base–pair, base–
ribose and base–phosphate interactions, respectively. Stack-
ing interactions are parameterized simply by the distance
between query and the reference base centers (proper mu-
tual orientation of the bases is guaranteed by the initial fil-
tering). As a result, one query doublet can be matched to
one or more classes of interactions. A doublet that exhibits
a geometry that is intermediate between two well-separated
classes may be reported as an imperfect match in both of
these classes.

Base (residue) pair interactions. Base/residue pairs in the
sense of the Leontis–Westhof classification (13) are detected
based on the distance to the selected reference doublets
(usually 10–16 doublets per interaction class). The distance
between the query doublet and the reference doublet is cal-
culated using two measures: (i) the RMSD between the dou-
blet spatially superimposed with the use of the C1′, C2,
C4 and C6 atoms (defined separately for A, C, G and U
residues), and (ii) the deviation between the interatomic dis-
tance matrices that do not require superposition. Here, for
a given interaction class, the query doublet is assigned a
score that reflects the number of interatomic distances that
fall into ranges derived from doublets in the training set
(the details of this score are included in the Supplementary
File S2). This measure of (dis)similarity is especially use-
ful for the processing of reduced representations that do
not contain all the atoms and/or for distorted structures

that may not be easily superimposable onto reference struc-
tures. In the case of the reduced representations, only the
common elements of the distance matrices are compared.
In the case of missing atoms within the bases of the dou-
blets, the classifier tries to rebuild the missing atoms, but
this procedure can only succeed if there are at least three
atoms available per base. If there is not enough information
to identify the three atoms required for the superposition,
then the RMSD-based score is not calculated and only the
score based on the comparison of distance matrices is used.
Hence, the classification is more precise for RNA represen-
tations that contain all or nearly all atoms or at least C1′,
C2, C4 and C6 atoms, but in principle can be attempted for
any coarse-grained representation that retains the planarity
of the base moiety (e.g. at least three beads per base).

Stacking interactions. For detecting stacking interactions,
we follow the conditions defined by Major and coworkers
(5), that is, find the appropriate distance between bases and
the angle between normal vectors. The ModeRNA stack-
ing detection algorithm uses a precise version of this crite-
rion; however, the current versions of MC-Annotate (5) and
FR3D (7) appear to use a more relaxed criteria, as we found
that they report stacking for some other residue pairs (e.g.
pair 157D:A C11/A G12). Hence, we extended our classi-
fier to detect stacking interactions recognized by both MC-
Annotate and FR3D, and this has been done using addi-
tional parameterization to measure an overlap area of poly-
gons spanned by the base atoms (including hydrogens) after
projecting the analyzed base onto the plane defined by the
reference base.

Base–phosphate and base–ribose interactions. Base–
phosphate and base–ribose interactions are identified
according to the conditions defined by the developers
of FR3D (15). Base–phosphate interactions are detected
based on the location of the phosphate and neighboring
oxygen atoms (OP1, OP2, O5′ and O3′). Base–ribose
interactions are detected based on the observed location
of the oxygen atoms from the ribose moiety (O2′, O3′ and
O4′). We found that the residue pairs involved in the base–
phosphate interactions classified as W 3BPh, W 4BPh or
W 5BPh by FR3D (7) formed geometrically overlapping
clusters; hence, we grouped them into a single class named
W 345BPh. Analogously, we found that residue pairs
classified as H 7BPh, H 8BPh and H 9BPh were also in-
distinguishable from each other, and we grouped them into
a single class H 789BPh. The merging of these classes can
be additionally justified by comments made by the authors
of FR3D, who noted that W (3/4/5)BPh interactions as
well as H (7/8/9)BPh interactions may be interchangeable
during conformational changes or thermal fluctuations
of RNA (15). The superposition of spatially very close
members of W (3/4/5)BPh interaction classes and ele-
ments from merged base–phosphate classes (W 345BPh,
H 789BPh) are presented in the Supplementary Figures S2
and S3.

Additional classes considered by classifier. Diagonal rela-
tions (consecutive and non-consecutive), sandwich (interca-
lation) and base–ribose stacking are detected analogously
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to the standard interaction types described above. In this
case, we parameterized similarity with the RMSD of the
second moiety atoms (base or ribose) after optimal super-
position of the first bases from the query and the reference
doublet.

Software

The new RNA contact classifier (ClaRNA) and additional
scripts were developed based on the Python programming
language, and Biopython (17) and SciPy (19) libraries. The
web interface was developed using the Django framework
(http://djangoproject.com).

Hardware

For calculations with third-party methods and for the train-
ing and benchmarking of the ClaRNA classifier, we used an
in-house high performance computing cluster comprising
624 nodes (2.2 GHz processor and 2 GB of RAM each).
The ClaRNA web server is hosted on a dual core virtual
machine with 4 GB of RAM.

RESULTS

Comparison with other classifiers

ClaRNA is a multi-class and multi-label classifier, since
each doublet can be annotated with multiple interactions.
Therefore, its evaluation is much more complicated than
that of classical binary classifiers.

To formalize the evaluation metric, for each interaction
class (base–pair, stacking, base–phosphate, base–ribose) we
introduce the following definitions.

True positive: the classifier returned some classification
(unambiguous, with a maximum score) and the result agrees
with at least two of the reference methods (or with FR3D
as the only classifier in the case of base–ribose and base–
phosphate interactions). Example: a doublet recognized by
ClaRNA, FR3D and RNAView as WW cis and unrecog-
nized by MC-Annotate.

True negative: the classifier does not return any result, and
there is no pair of reference methods that would give the
same result (or FR3D alone does not return any result in
the case of base–ribose and base–phosphate interactions).
Example: a doublet unrecognized by ClaRNA, FR3D and
MC-Annotate and recognized by RNAView as SS trans.

False positive: the classifier returns a result that does
not agree with the consensus result of the reference meth-
ods (or FR3D alone in case of the base–ribose and base–
phosphate interactions). Example 1: a doublet recognized
by ClaRNA and RNAView as SH cis and unrecognized by
FR3D and MC-Annotate. Example 2: a doublet recognized
by ClaRNA SH cis and recognized by FR3D, RNAView
and MC-Annotate as HH cis.

False negative: the classifier does not return any result, but
the reference methods’ consensus exists. Example: a dou-
blet unrecognized by ClaRNA and recognized by FR3D,
RNAView and MC-Annotate as HH cis.

It should be emphasized that the false positive defini-
tion includes two kinds of misclassifications: elements that
were found to belong to some class while they should not

Figure 2. ROC curve for ClaRNA classifier for each contact class: classical
pairs (red), non-classical pairs (green), stackings (blue), base–phosphate
interactions (orange) and base–ribose (pink) interactions.

be classified at all (e.g. SS cis instead of the expected UN-
DETECTED) and elements with a wrong classification (e.g.
WW trans instead of the expected WW cis). It must be also
stressed that in most of the cases, the set of true negatives is
the largest, which has a major influence on some of the eval-
uation parameters (e.g. the accuracy or false positive rate).
Additionally, we provide a formal mathematical definition
of the confusion table in Supplemenary File S2.

Using the above definitions, ClaRNA has been bench-
marked using the testing set, and the following accuracies
were obtained: 0.9974 for canonical base pairs (WW cis for
CG/GC or AU/UA residues), 0.9833 for all non-canonical
residue–residue pairs including wobble WW cis UG/GU
pairs, 0.9841 for all non-canonical residue–residue pairs
excluding wobble pairs, 0.9615 for stacking interactions,
1.000 for base–phosphate interactions and 0.9946 for base–
ribose interactions. The Matthews correlation coefficients
are as follows: 0.9842 for canonical base pairs (correlation
for classifying ‘canonical base pairs’ against all remaining
doublets), 0.8450 for non-canonical pairs including wob-
ble pairs, 0.8166 for non-canonical pairs excluding wobble
pairs, 0.9125 for stacking, 0.9988 for base–phosphate in-
teractions and 0.9008 for base–ribose interactions. The Re-
ceiver Operating Characteristic (ROC) curve for ClaRNA is
presented in Figure 2. Detailed lists of other confusion ma-
trix parameters for ClaRNA and other classifiers are pre-
sented in Supplementary Table S1.

We also calculated simple similarity scores for results
obtained from various classifiers including MC-Annotate,
RNAView, FR3D and ClaRNA. Results presented in Sup-
plementary Table S1 reveal that most classifiers generally
agree on the classification of classical base pairs, but there
are substantial differences between them with respect to the
classification of non-classical base pairs. Also there is no
universal agreement on the detection of stacking interac-
tions between the classifiers tested in this work.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/42/19/e151/2902547 by guest on 20 M

arch 2024

http://djangoproject.com


e151 Nucleic Acids Research, 2014, Vol. 42, No. 19 PAGE 6 OF 11

Many of the RNA structures from the PDB are redun-
dant in the sense that they form groups of structures with
globally similar tertiary folds. The geometries of equivalent
residues among these structures are not completely inde-
pendent, as they are subject to evolutionary constraints. Re-
lated structures are also often used as an aid in the process
of structure determination. Besides, a good classifier of con-
tacts should be able to perform well also on RNA structures
that exhibit completely novel folds, without using informa-
tion from structures of homologous molecules. To address
these issues we performed an additional 13-cross-validation
analysis based only on sets of structures that represent non-
redundant classes defined in (20), and, in this case, ClaRNA
obtained even better results (see Supplementary Table S1).
During each cycle of the cross-validation procedure, the
classifier parameters were automatically determined based
on the training set doublets. The final parameters of the
classifier released as a web server were determined using the
complete training set.

We also investigated a different definition of the table
of confusion, where doublets with uncertain classification
(e.g. those reported by only one classifier) were completely
omitted. The obtained results were marginally better (less
than 1% difference) compared to the standard definition de-
scribed earlier (data not shown).

We also evaluated the parameters using the methodology
from (21) and obtained an overall percentage of correct pre-
dictions Q total = 99.06%. The full evaluation and detailed
parameters using this methodology have been presented in
Supplementary Table S1.

Detailed presentation of ClaRNA results for particular
interaction types (with visualization) is available in the On-
line materials O3–O5 at the program website (http://iimcb.
genesilico.pl/clarna/supp/).

We also compared the similarity of the results obtained
by ClaRNA and other classifiers (Figure 3). Each value
corresponding to the intersection of sets CL, MC, RV and
FR represents the percentage of doublets from the testing
set recognized by ClaRNA, MC-Annotate, RNAView and
FR3D, respectively, with the same interaction type. Here,
100% is arbitrarily defined as the number of doublets clas-
sified into the same interaction type by at least two methods.
This analysis illustrates the tendency of individual methods
to agree with each other as well as to propose solutions that
are at odds with classifications made by other methods. For
classical base pairs, all methods showed excellent agreement
with each other, with over 94% of the pairs classified in the
same way by all methods tested. RNAView reports the high-
est number of classical base pairs that are not identified by
other methods (2.57%). In the case of non-classical pairs,
the agreement between all methods is much lower, close to
67%, and each method reports a sizeable fraction of pairs
that are not classified as pairs by any other method. FR3D
is particularly generous in reporting non-canonical pairs, as
the number of such pairs identified by this method alone
is equal to as much as 30.70% of cases where at least two
methods agree with each other. For stacking interactions,
MC-Annotate and ModeRNA are quite conservative, and
FR3D is the only method to report over 16% of doublets
as stacked, compared to the number of doublets classified
as stacked by at least two methods considered. For base–

phosphate interactions, ClaRNA agrees with FR3D, and
for base–ribose interactions, ClaRNA reports those iden-
tified by FR3D, as well as identifies 18.37% additional ones
that are not identified by FR3D.

Many ‘families’ of interactions are geometrically similar
to each other and may be difficult to separate. Therefore,
we have compared the results obtained with different clas-
sifiers with a view that geometrically related pairs (IsoDis-
crepancy Index (22) below 9) should be considered to be ‘the
same’; i.e. a detection of a pairing type that was different,
but geometrically similar to the one in the reference struc-
ture, was regarded as a true positive. In addition, we asked
to what extent the results would be different if we regarded
‘all’ the non-canonical base–pairing families as equivalent
(regardless of the IsoDiscrepancy Index value), and in this
test we considered a detection of ‘any’ non-canonical base–
pair type as a true positive in the case where the real struc-
ture contained a non-canonical base pair of the same or any
other type. In both cases, the calculated accuracies of the
classifiers were not significantly different from the ones ob-
tained originally. This leads to the conclusion that the dis-
crepancies among the classifiers are mostly due to two types
of errors: (i) a classifier annotates a pairing that is not an-
notated by the reference methods (additional pairing that
should not be reported at all) and (ii) a classifier reports ‘no
pairing’ for a pair that has a consensus annotation accord-
ing to the reference methods (missed true pairing).

Finally we have benchmarked ClaRNA using coarse-
grained models. For this purpose, we reduced all the test
set RNA structures to the representation of our in-house
developed program SimRNA [the sugar–phosphate back-
bone represented by two pseudo-atoms (centered at P and
C4′ atoms) and the bases represented by three points (cen-
tered at N9, C2, C6 or N1, C2, C4 atoms for purines and
pyrimidines, respectively]. We obtained the following accu-
racies: 0.9974 for canonical base pairs (WW cis for CG/GC
or AU/UA residues), 0.9801 for all non-canonical residue–
residue pairs (including wobble WW cis UG/GU pairs),
0.9810 for all non-canonical residue–residue pairs exclud-
ing wobble pairs, 0.9614 for stacking interactions, 0.9566
for base–phosphate interactions and 0.8403 for base–ribose
interactions. The Matthews correlation coefficients are as
follows: 0.9842 for canonical base pairs, 0.8234 for non-
canonical pairs (including wobble pairs), 0.7916 for non-
canonical pairs (excluding wobble pairs), 0.9126 for stack-
ing, 0.5325 for base–phosphate interactions and 0.2981 for
base–ribose interactions. Detailed results of the benchmark
are presented in the Supplementary Table S1.

Computing efficiency

We benchmarked the time required to process the PDB
structures as a function of the number of the residues. The
results are presented in Supplementary Figure S4. ClaRNA
is slower than RNAView and MC-Annotate, but compara-
ble in speed with FR3D. This is because thus far we spent
most of the effort on optimizing the quality of results. The
time efficiency will be improved in future versions of the
classifier, in particular by implementation of the classifier
in a programming language such as C++.
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Figure 3. Comparison of the ClaRNA results for the testing set. Each value represents the percentage of doublets from the testing set detected by ClaRNA
(CL), MC-Annotate (MC), RNAView (RV), FR3D (FR) and ModeRNA (MO). The number of canonical base pairs that were detected exclusively by
ClaRNA was only 2516, as compared to the size of the test set of canonical base pairs (486 118). MC-Annotate, RNAView and FR3D returned 3060, 11
352 and 1684 assignments of canonical base pairs, respectively, that lacked support from other classifiers. The number of non-canonical base pairs (including
wobble WW cis UG/GU pairs) that were detected only by ClaRNA is 31 016 as compared to the size of the corresponding test set of non-canonical base
pairs (246 290). MC-Annotate, RNAView and FR3D returned 31 592, 45 904 and 57 832 assignments of non-canonical base pairs, respectively, that lacked
support from other classifiers. Furthermore, the number of stacking interactions detected by ClaRNA exclusively was 12 533 (the test set contains 721
851 doublets classified as ‘consensual’ by other methods). In comparison, MC-Annotate, ModeRNA and FR3D returned 0, 34 and 129 230 stacking
assignments, respectively, that lacked support from other classifiers.

Additional classes considered by classifier

In addition to the annotation of contact types, for which
we prepared reference data sets based on RNA structure
annotation by other methods, we trained ClaRNA to rec-
ognize several other types of spatial relations between adja-
cent residues that have a substantial number of occurrences
in the analyzed RNA structures and in our subjective opin-
ion are important for a clear understanding of RNA 3D
architectures. The current version of ClaRNA reports four
additional classes of relations, including direct base–ribose
stacking, and three types of indirect relations that involve
stacking and base pairing with other residues (Figure 4). In
our experience, the detection of these relations can greatly
facilitate the inference of secondary structure from 3D co-
ordinates.

Diagonal (consecutive). This class of spatial relations is
composed of doublets of consecutive (covalently bound)
residues denoted by A and B, oriented in a diagonal fash-
ion. Residues A and B are located in a such way that there
is enough space for another residue (denoted by C), with
the additional condition that A and C could form WW cis
interaction and B and C could form a stacking interac-

tion. ClaRNA detects this class of spatial relations between
residues A and B without taking the presence or orienta-
tion of residue C into account. An example interaction of
this type is presented in Figure 4A.

Diagonal (non-consecutive). This class is composed of
non-consecutive residues denoted by A and B, located in
a diagonal fashion. In this case we require that there should
be enough space for two neighboring residues C and D,
such that there could be WW cis interactions between A–D
and B–C, and stacking interactions between A–C and B–
D. ClaRNA detects this class of spatial relations between
residues A and B without taking the presence or orientation
of residues C and D into account. An example interaction
of this type is presented in Figure 4B.

Sandwich (consecutive). Doublets of consecutive residues
A and B form this class of spatial relationship if they are
placed in such a way that there is enough space for another
residue C to be inserted (intercalated) between them and
form stacking interactions with both A and B. Again, the
detection of this relationship between A and B does not
require the detection of the actual residue C. We used the
RNA Bricks database (23) to test the specificity of ClaRNA
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Figure 4. Additional classes of spatial relations between ribonucleotide residues detected and reported by ClaRNA: diagonal (consecutive) (A), diagonal
(non-consecutive), arrows indicate main chain direction (B), sandwich (consecutive) (C) and base–ribose stacking (D). The pair of residues forming a
contact is indicated by the green color, and possible neighboring residues are indicated by the gray color.

in detecting this type of contact. Out of the 6705 residue
pairs detected in the test set structures, all but two inter-
act with a third intercalating base. The two exceptions are
1FCW:D G18/D G19 and 1S1H:A C1501/A A1502 from
low-resolution structures modeled based on electron mi-
croscopy data. In both cases the interacting residues suffer
from severe clashes that may suggest limited reliability of
their geometry (data not shown). An example interaction
of this type is presented in Figure 4C.

Base–ribose stacking. This class of doublets forms stack-
ing interaction between the base moiety of one residue (de-
noted by A) and the ribose moiety of another residue (de-
noted by B). An example interaction of this type is pre-
sented in Figure 4D.

ClaRNA implementation and web server

ClaRNA classifier is available as a web server at http://
iimcb.genesilico.pl/clarna/. The site provides a web interface
for uploading input PDB files. A sample query is presented
in Figure 5. Each query is queued and processed by the
server. All queries have a unique job link that allows access
to the results. With the currently available storage capacity,
we store the results up to 1 month. Optionally, a user can

provide an e-mail address for notification of the job com-
pletion.

Visualization of detected contacts. Query structures are
annotated with the detected contacts. Since ClaRNA is
not a binary classifier and was developed specifically to
enable the detection of suboptimal matches, its results
can be filtered by setting the threshold of the score.
Each contact can be visualized in 3D using JSmol, an
open source JavaScript-Based Molecular Viewer From Jmol
(http://sourceforge.net/projects/jsmol/). Query structures
are also processed by other classifiers including RNAView,
MC-Annotate, ModeRNA and FR3D, and the results ob-
tained are presented to the user for comparison. Secondary
structure inferred from the contacts detected by both
ClaRNA and other methods is also presented as a graph,
using the Varna applet (24). We use an in-house modified
version of Varna to visualize stackings, non-classical pairs,
phosphate–base and ribose–base interactions. A user can
also export results to a Comma-separated values file (CVS)
or a JavaScript Object Notation contact graph file (JSON).
A sample results’ page is presented in Figure 6.
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Figure 5. ClaRNA homepage, with a sample query.

Figure 6. Sample classifier output.
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Figure 7. Example of two close doublets with different cis/trans ori-
entations. The doublet 1N8R:A U2889/A C2868 (show in red color)
is reported as HH trans by MC-Annotate classifier and doublet
1Q86:A U2889/A C2868 (shown in green color) is reported as HH cis by
the same classifier.

DISCUSSION

Systematic differences with other classifiers

Problems with cis/trans pair discrimination. We found that
algorithms for discrimination between cis and trans orien-
tations of base pairs (13) implemented in MC-Annotate
and RNAView in some cases produce inconsistent re-
sults for base pairs closely similar in geometry. For ex-
ample, doublets such as 1N8R:A U2889/A C2868 and
1Q86:A U2889/A C2868 have almost the same structure,
but MC-Annotate reports the first one as HH trans and
the second one as HH cis (Figure 7). In order to avoid
such problems, we decided to use the approach used by
FR3D, i.e. to take into account the local RNA strand ori-
entation for defining cis/trans orientations. Consequently,
there are cases where ClaRNA generates results that gen-
erally agree with FR3D, but disagree with RNAView and
MC-Annotate. A full list of differences is presented on the
ClaRNA web page (Online material O4).

Interactions with the sugar edge (SH cis/CA). In general
our classifier mimics the consensus classification obtained
from other classifiers. In some cases, however, the classi-
fiers used as a reference returned predictions of pairs that
could not be validated by the visual analysis. Such outliers
were corrected in the ClaRNA reference set. For example, a
small number of doublets annotated by MC-Annotate and
RNAView as Watson–Hoogsteen cis pairs were found by vi-
sual inspection to be geometrically much closer to sugar–
Hoogsteen cis pairs (as classified by FR3D) and, in fact,
one of the residues in a doublet presented more of the sugar
edge interacting with the other residue, compared to its
Watson–Crick edge (Figure 8). We describe such cases on
the ClaRNA web page (with interactive browser as Online
material O4 and the full list of doublets as Online Material
O8).

Base–ribose interactions. The version of FR3D tested at
the time of writing this manuscript had a minor implemen-
tation issue that affected the detection of base–ribose con-
tacts, as it also tested the position of a phosphate atom.

Figure 8. Example of doublets classified by MC-Annotate and RNAView
as WH cis, which FR3D and ClaRNA report as SH cis. Each doublet is su-
perimposed using base of first residue (show in red color), the other residue
is shown in green color.

Since the phosphate atom is irrelevant to base–ribose con-
tacts, we removed that condition from our classifier. As a re-
sult, ClaRNA detects some pairs of residues as base–ribose
interactions that are valid, but have been discarded by the
FR3D implementation used at the time of ClaRNA devel-
opment. We describe such cases on ClaRNA web page (with
interactive browser as Online material O4 and the full list of
doublets as Online Material O8). This issue has been com-
municated to the developers of FR3D.

CONCLUSIONS

ClaRNA is a new method for computational classification
of contacts in RNA 3D structures. It uses a completely
different approach than other methods developed so far,
namely, it relies on a reference data set resulting from a
consensus classification obtained from other methods, com-
bined with expert assessment. The only exceptions are base–
ribose and base–phosphate interactions which are currently
detected exclusively by FR3D according to the classifica-
tion proposed by the Leontis group. Therefore, for these
types of contacts, FR3D is the only external classifier we
could use to generate the reference set. Of course, this causes
some bias, but to our knowledge, there is no other classi-
fier that we could include. Unlike other methods, it was de-
veloped to detect suboptimal contacts, to facilitate model
building based on limited experimental observations and to
guide refinement of models obtained from homology mod-
eling that may contain various distortions. The set of con-
tact classes reported by ClaRNA can be easily extended to
incorporate other types of structures or subtypes of spa-
tial relations between ribonucleotide residues. In the fu-
ture, ClaRNA will also be extended to enable detection and
classification RNA–ligand and RNA–protein interactions.
ClaRNA is freely available via a web server that includes an
extensive set of tools for processing and visualizing struc-
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tural information about RNA molecules, including com-
parison of results with those available from other methods.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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