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ABSTRACT

Comprehensive motif discovery under experimental
conditions is critical for the global understanding of
gene regulation. To generate a nearly complete list of
human DNA motifs under given conditions, we em-
ployed a novel approach to de novo discover signif-
icant co-occurring DNA motifs in 349 human DNase
I hypersensitive site datasets. We predicted 845 to
1325 motifs in each dataset, for a total of 2684 non-
redundant motifs. These 2684 motifs contained 54.02
to 75.95% of the known motifs in seven large col-
lections including TRANSFAC. In each dataset, we
also discovered 43 663 to 2 013 288 motif modules,
groups of motifs with their binding sites co-occurring
in a significant number of short DNA regions. Com-
pared with known interacting transcription factors
in eight resources, the predicted motif modules on
average included 84.23% of known interacting mo-
tifs. We further showed new features of the predicted
motifs, such as motifs enriched in proximal regions
rarely overlapped with motifs enriched in distal re-
gions, motifs enriched in 5′ distal regions were of-
ten enriched in 3′ distal regions, etc. Finally, we ob-
served that the 2684 predicted motifs classified the
cell or tissue types of the datasets with an accuracy
of 81.29%. The resources generated in this study are
available at http://server.cs.ucf.edu/predrem/.

INTRODUCTION

The comprehensive discovery of DNA motifs is fundamen-
tal to the global understanding of gene regulation. DNA
motifs, often represented as consensus sequences or posi-
tion weight matrices, are common DNA sequence patterns
bound by regulatory proteins (1). One major type of regu-

latory proteins is transcription factors (TFs). Several hun-
dred TFs may be active under an experimental condition
(2). Multiple active TFs often bind short DNA regions of
several hundred base pairs (bps) called cis-regulatory mod-
ules (CRMs) to control the temporal and spatial expression
patterns of target genes (3). It is thus essential to identify
motifs of all active TFs under an experimental condition to
gain a global view of gene regulation under this condition.

The advent of several next generation sequencing based
biotechnologies provides an unprecedented opportunity to
discover DNA motifs of active TFs. TF-based chromatin
immunoprecipitation followed by massive parallel sequenc-
ing (ChIP-seq) experiments can pinpoint potential binding
regions of one TF under a given condition (4,5). These re-
gions, each on average several hundred bps long, can aid the
comprehensive discovery of cofactor motifs of the TF un-
der consideration (6). Histone-based ChIP-seq experiments
may indicate all potential enhancers and promoters bound
by TFs under an experimental condition (7–9). These re-
gions, each often several thousand bps long, may contain
binding sites of all active TFs. Finally, DNase I hypersen-
sitive analysis followed by sequencing (DNase-seq) defines
the DNase I hypersensitive sites (DHSs) that are accessible
for TF binding (10). Because DHSs are only several hun-
dred bps long and likely contain the majority of TF binding
sites (TFBSs), DHSs are viable for the comprehensive dis-
covery of DNA motifs. For instance, a recent study showed
that 98.5% of TFBSs mapped by TF-based ChIP-seq exper-
iments in the Encyclopedia of DNA Elements (ENCODE)
project are located in DHSs defined by DNase-seq (11).

Many computational methods are available for motif
discovery. Most existing methods (12,13) are designed for
small instead of large datasets. A handful of more recently
developed methods (14–20) identified bona fide motifs in
TF-based ChIP-seq datasets. Despite the existence of these
methods, to our knowledge, few studies have attempted to
comprehensively de novo discover motifs in histone-based
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TF binding regions or DHSs under a given experimental
condition.

Recently, a new method, SIOMICS, successfully identi-
fied most cofactor motifs in 13 TF-based ChIP-seq datasets
and no motif in 13 random datasets (6). Because the ini-
tial version of SIOMICS (6) considered only motifs of a
fixed length, which is not the case in practice, we further ex-
tended it to predict motifs of variable lengths and showed
that the extended SIOMICS had higher accuracy in motif
discovery in the aforementioned 26 datasets (21). For sim-
plicity, SIOMICS below refers to the extended SIOMICS.
Compared with other motif discovery methods developed
for ChIP-seq data analysis, SIOMICS has two special fea-
tures that make it a promising tool for comprehensive mo-
tif discovery: (i) SIOMICS considers the co-occurrence of
multiple sequence patterns in short genomic regions to dis-
cover motifs, which likely decreases false positive predic-
tions compared with methods considering individual pat-
terns separately; and (ii) SIOMICS can identify individ-
ually under-represented motifs in addition to overrepre-
sented motifs, because the chance of the occurrence of a
combination of multiple motifs in a random sequence is
much smaller than that of one individual motif, and un-
derrepresented motifs may be significantly over-represented
in input sequences when considered together with their co-
factor motifs and thus can be identified as a motif in mo-
tif modules. Here a motif module is defined as a group of
motifs with binding sites of all motifs in this group co-
occurring in significant many short regions; ‘short regions’
refers to genomic regions shorter than 1000 bps. Because
of its high accuracy and low time-cost requirement (21),
SIOMICS holds great promise for the comprehensive dis-
covery of motifs under a given experimental condition.

We applied SIOMICS (21) to 349 human DHS datasets
to predict motifs of potentially all active TFs in each
dataset. These datasets were generated by DNase-seq from
349 human samples that could be classified into 30 cell or
tissue types (22). We identified 845 to 1325 motifs in each
dataset. By representing similar motifs in different datasets
with a unique motif, we clustered the predicted motifs in all
datasets into 2684 non-redundant motifs. Compared with
seven collections of known TF motifs, more than 84.13%
of the 2684 predicted motifs were similar to the known mo-
tifs, and 54.02 to 75.95% of the known motifs were simi-
lar to the 2684 predicted motifs. Because SIOMICS iden-
tified motifs through the identification of motif modules,
we also predicted 43 663 to 2 013 288 motif modules in
each dataset. Compared with eight resources of known
interacting TFs, we observed that on average more than
84.23% of the known interacting TFs were represented in
our predicted motif modules. We further investigated the ge-
nomic locations that the motifs prefer to bind, and found
that 45.81% of motifs prefer to bind special types of re-
gions. We also observed that motifs enriched in proximal
regions rarely overlapped with motifs enriched in distal re-
gions, motifs enriched in 5′ distal regions were often en-
riched in 3′ distal regions, etc. Finally, we showed that the
predicted motifs reliably defined cell or tissue types of the
349 datasets. All generated resources are freely available at
http://server.cs.ucf.edu/predrem/.

MATERIALS AND METHODS

DHS data processing

We downloaded 349 DHS datasets from (22) (Supplemen-
tary file S1). Each DHS region shorter than 800 bps was
extended evenly from its two ends to 800 bps, because the
average CRM length is much larger than that of these DHSs
(23,24). We also discarded DHSs longer than 5000 bps, be-
cause the number of such DHSs was relatively small and in-
cluding them significantly increased the time cost to predict
motifs. We downloaded corresponding DNA sequences for
DHSs no longer than 5000 bps from the University of Cal-
ifornia, Santa Cruz genome browser, with repeats and exon
regions masked by ‘N’s. The exon regions were defined in
the GENCODE version 18 (25).

We assigned the cell or tissue types of the 349 datasets ac-
cording to the assignment of the same datasets in (26) and
known biology for other datasets. We also distinguished fe-
tal tissues from normal tissues. Moreover, we merged the
fIntestine Sm type and the fIntesting Lg types, because on
average 71% of the DHSs in datasets from the two types
overlapped (Supplementary file S2). Moreover, 99.17% of
the predicted motifs in the two types were similar. In this
way, we assigned the 349 datasets to 30 types (Supplemen-
tary file S1).

The pipeline for comprehensive motif discovery

The pipeline for comprehensive motif discovery by
SIOMICS (21) in a DHS dataset was as follows (Figure 1):
first, SIOMICS ranked all 8-mer patterns with the repeat-
masked sequences from the extended DHS regions (6).
SIOMICS used 8-mer patterns as an initial approximation
of motifs, because 8-mer patterns already account for the
main portion of the majority of TF binding motifs (27–30).
Second, SIOMICS took the top 2000 8-mer patterns as
candidate motifs to predict motif modules and motifs
(6). SIOMICS considered the top 2000 patterns because
there are around 1500 sequence-specific-binding TFs in
the human genome (2) and one TF may bind multiple
motifs (31). The 8-mer patterns contained in predicted
motif modules were output as predicted motifs. Third,
SIOMICS iteratively ranked the top 2000 patterns and dis-
covered motif modules and motifs, until 2000 motifs were
discovered or no new motif was discovered in r consecutive
iterations (6). Finally, for each obtained motif, SIOMICS
extended/shortened the motif based on nucleotides at the
neighboring positions of its current TFBSs (Supplementary
file S3). Correspondingly, SIOMICS changed the TFBSs
of these adjusted motifs and the motif modules composed
of these adjusted motifs (21).

Resources of known motifs and known interacting TF pairs

We downloaded known motifs from seven collections. They
were TRANSFAC, JASPAR (2014 Core, non-redundant),
HOCOMOCO (v9), FactorBook, a collection from a high
throughput study we termed DBS (DNA binding speci-
ficity), Neph et al. and Kheradpour et al. (27–29,32–
35). TRANSFAC (28) and JASPAR (29) are two major
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Figure 1. The pipeline to discover motifs in a DHS dataset by SIOMICS.

databases of known motifs. HOCOMOCO contains hand-
curated human TF motifs (32). FactorBook stores the hu-
man TF motifs identified in ENCODE (33). DBS contains
motifs that represent the majority of human TF binding
models (34). Neph et al. de novo identified motifs within
∼50 bps long DNase footprints in 41 DHS datasets (27).
Kheradpour et al. provided a resource of known and dis-
covered motifs in ENCODE TF-based ChIP-seq datasets
(35). We also downloaded the motifs in JASPAR 2010 All
Collection as certain motifs such as the FAM (familial bind-
ing) motifs and the CNE (conserved non-coding elements)
motifs are not included in the JASPAR 2014 Core. We used
a compendium of 244 RNA-binding motifs as well, which
are identified for RNA-binding proteins from in vitro exper-
iments (36).

We extracted known interacting TF pairs from eight re-
sources: BioGRID (Release 3.2.108) (37); DIP (Release
2014/01/17) (38); HPRD (Release 9) (39); IntAct (Re-
lease 2014/02/13) (40); MINT (Release 2012/10/29) (41);
PIPs (score cut off 0.25) (42); Gerstein et al. (43) (http:
//encodenets.gersteinlab.org/enets1.Proximal raw.txt); and
Ravasi et al. (44).

Enrichment of a motif in a type of regions

We defined 16 types of genomic regions. They were proxi-
mal transcription termination site (TSSs), proximal TTSs,
5′ UTRs, 3′UTRs, first introns, other introns, 5 types of 5′
distal regions and 5 types of 3′ distal regions. The proximal
TSSs were defined as the regions from the gene start sites
of the GENCODE V18 genes to their 2.5 kb upstream (25).
The proximal TTSs were the regions from the gene end po-
sition of the GENCODE genes to their 2.5 kb downstream.
The five types of 5′ and 3′ distal regions were defined with
the following five cutoffs: 2.5, 5, 10, 20 or 100 kb. The 5′ >x
distal regions of a gene were defined as regions that were
more than x away from the start of this gene and at least
x away from any other gene, where x equal to one of the
five cutoffs. Similarly, we defined 3′ >x distal regions for the
five cutoffs. The 5′ UTRs, 3′ UTRs, first introns and other

introns were defined according to GENCODE V18. To an-
alyze motifs shared by proximal TSSs and proximal TTSs,
we also defined ‘pure’ proximal TSSs that did not overlap
with any proximal TTS, and ‘pure’ proximal TTSs that did
not overlap with any proximal TSS. Similarly, we defined
‘pure’ 5′ and 3′ distal regions.

We calculated the enrichment P-value of a motif in a type
of genomic regions using the binomial test. The parameter
of the binomial test was calculated as the ratio of the total
number of bps in this type of genomic regions that over-
lapped with the DHSs in the dataset under consideration
to the total number of bps in DHSs in this dataset. If the
P-value < 0.01 after Bonferroni correction, we considered
that the motif was enriched or preferred to occur in this type
of genomic regions.

Cluster motifs from different datasets into non-redundant
motifs

For the comparison of predicted motifs with known motifs,
we clustered motifs discovered in the 349 datasets. First, we
sorted the datasets according to the number of their pre-
dicted motifs from the largest to the smallest. Second, we
considered every motif from the dataset with the largest
number of predicted motifs as an initial non-redundant mo-
tif cluster. Third, for the remaining dataset with the largest
number of predicted motifs, we determined which motifs
in this dataset were similar to the non-redundant motif
clusters. A motif x was considered to be similar to a non-
redundant motif cluster A, if (i) x was similar to at least one
motif in A with the STAMP E-value (45) <1E-8; and (ii)
x was similar to all other motifs in A with the STAMP E-
value < 1E-5 when the number of motifs in A was <4, or
similar to at least 90% of other motifs in A with the STAMP
E-value < 1E-5 when the number of motifs in A was >3.
If x was similar to A, we added x to the cluster A. For all
motifs that were not similar to any cluster, we determined
whether these motifs were similar to each other. If multiple
motifs were similar, a new cluster containing these motifs
was added to the list of the clusters. For every remaining
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motif, a new cluster with only this motif was added to the
cluster list. Fourth, we repeated the third step with each re-
maining dataset until all motifs in all datasets were consid-
ered. We used the motif that was similar to the largest num-
ber of other motifs (E-value < 1E-5) in the same cluster to
represent this cluster. Fifth, we refined clusters by iteratively
conducting hierarchical clustering on adjusted motifs con-
tained in clusters with similar representative motifs (Sup-
plementary file S3). Finally, we output the clusters as final
non-redundant motifs, with each cluster that contains many
similar adjusted motifs represented by one motif.

Alternatively, we started from the dataset with the small-
est number of predicted motifs to generate the initial clus-
ters. We then modified these initial clusters by considering
motifs from datasets with more and more predicted motifs,
using the aforementioned criteria to modify existing clusters
and generate new clusters. We also started from GM12878,
K562 and H1-hESC, followed by the types of datasets with
the largest number of datasets, to cluster motifs. The two al-
ternative procedures generated similar non-redundant mo-
tifs and similar numbers of motifs as the first procedure,
with the first procedure generating <1% fewer motifs. We
thus chose the first procedure for convenience.

RESULTS

A brief summary of motif modules and motifs discovered in
349 DHS datasets

We applied SIOMICS (21) to the 349 DHS datasets to dis-
cover motifs. On average, we discovered 376 743 motif mod-
ules and 1083 motifs in each dataset. The number of motifs
in a predicted motif module varied from 2 to 6, with 99.94%
of motif modules consisting of 2 to 4 motifs. On average,
there were 2.56 motifs in a motif module.

The number of motif modules and motifs discovered in
a dataset varied greatly (Supplementary file S1). The five
datasets with the most motif modules were all from fetal
muscle tissues, with 2 013 288 the largest number of mo-
tif modules identified in a dataset. The two datasets with
the smallest number of motif modules were from primary T
helper cells and contained 43 663 and 48 586 motif modules.
The 30 datasets with most predicted motifs were all from
fetal tissues with the exception of the dataset 10 CACO2-
DS8235, which contained the highest number of adjusted
motifs (1325 motifs). Approximately 50% of the 30 datasets
with the fewest motifs related to hematopoietic tissues, in-
cluding five datasets related to human primary T helper
cells; the smallest number of adjusted motifs discovered in
a dataset was 825.

The number of motif modules discovered in a dataset
highly correlated with the number of motifs in the same
dataset (Spearman’s rank correlation 0.8991). The number
of motif modules in a dataset also highly correlated with the
average number of motifs in modules in the same dataset
(Spearman’s rank correlation 0.9358). This average number
varied across datasets, with the largest average number from
a fetal tissue dataset and the smallest average number from
a T helper cell dataset.

The number of datasets where a motif was discovered
also differed considerably (Supplementary file S4). To de-
termine in how many datasets a motif occurred, we clus-

tered motifs from all datasets into 2684 clusters and rep-
resented each cluster with a unique motif (Supplemen-
tary file S4). A total of 14 of the 2684 motifs occurred
in all datasets. Another 63 motifs were found in all 30
types of tissues and cells, although not in all datasets.
These motifs are likely motifs of house-keeping TFs. For
instance, motifs nrMotif1, nrMotif7, nrMotif10 and nr-
Motif13 were similar to motifs of known house-keeping
TFs FOXJ3 (TOMTOM: 0.0131968, STAMP: 7.9533E-
7), REST (TOMTOM: 0.499988, STAMP: 1.5034E-8),
PRDM4 (TOMTOM: 0.325671, STAMP: 2.6343E-10) and
PPARA (TOMTOM: 0.256667, STAMP: 1.4763E-6), re-
spectively (The TOMTOM and STAMP similarity E-values
were in the parentheses) (45–47). There were also 395 motifs
discovered in <5% of the datasets. Many of these 395 motifs
were similar to tissue-specific motifs in the literature. For
instance, motifs nrMotif2316 and nrMotif2570 were simi-
lar to motifs of known tissue-specific TFs HNF1B (TOM-
TOM: 0.149668, STAMP: 2.1465E-8) and PAX5 (TOM-
TOM: 0.126543, STAMP: 6.893E-8), respectively (48,49).

Because motifs were often discovered in multiple
datasets, the discovered motif modules were also shared by
datasets. If motif modules in two datasets were composed
of the same subset of the 2684 motifs, we considered them
to be shared by the two datasets. We found 9 418 555
shared motif modules in the 349 datasets. The percentage
of motif modules shared by two datasets ranged from
58.81 to 99.49%, with an average of 92.0%. Relatively,
the percentage of shared modules by datasets from fetal
muscle and fetal kidney was not impressively high, whereas
the percentages were much higher from tissues such as
endothelial, fibroblast, etc (Supplementary file S1).

The 2684 non-redundant motifs were similar to known motifs
in seven large collections

To validate the 2684 motifs, we compared them with mo-
tifs collected in seven public repositories (Table 1). We em-
ployed two tools, TOMTOM (47) and STAMP (45), to de-
fine similar motifs. Based on our experience, STAMP may
improperly consider two motifs of very different lengths
similar, and TOMTOM cannot distinguish random pat-
terns with low information content from true motifs with
high information content (Supplementary file S3). Combin-
ing these two tools can address these issues to a large extent.
Two motifs were called similar if the TOMTOM compari-
son E-value of the two motifs was <0.5 and the STAMP
comparison E-value of the two motifs was <1E-4, or the
TOMTOM E-value was <1 and the STAMP E-value was
<1E-5.

We observed that the predicted motifs included the ma-
jority of known vertebrate motifs in the seven collections.
For instance, 54.02, 55.31 and 63.82% of vertebrate motifs
in TRANSFAC, JASPAR 2014 Core and HOCOMOCO,
respectively, were similar to the 2684 motifs (Table 1A).
Note that SIOMICS does not consider motifs with gaps in
the middle, and almost all motifs with no gap identified by
Neph et al. in ∼50 bps long DHS footprints were similar to
our predicted motifs. To assess the significance of the high
percentages of known motifs that were similar to the pre-
dicted motifs, we generated 2684 random motifs with the
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Table 1A. The majority of vertebrate motifs in seven collections were included in our prediction

Collections
#Motifs in the
collection

#Motifs in the
collection predicted
by 2684 nrMotifs

% Motifs in the
collection predicted
by 2684 nrMotifs

Average #motifs in
the collection
predicted by 2684
randomly generated
motifs

Average% motifs in the
collection predicted by
2684 randomly generated
motifs

TRANSFAC 522 282 54.02 27.2 5.21
JASPAR 593 328 55.31 36.8 6.21
HOCOMOCO 1896 1210 63.82 101.6 5.36
FactorBook 79 60 75.95 4.3 5.44
DBS 843 458 54.33 52.4 6.22
Neph et al. 683 497 72.77 41.5 6.08
Kheradpour et al. 2065 1127 54.58 119.8 5.80

same length as the corresponding predicted motifs. Each
row of a random motif was constructed by generating four
random numbers and then normalized them into numbers
between 0 and 1 so that the sum of the normalized four num-
bers was 1. We compared these random motifs with the mo-
tifs in the seven repositories in the same way. We repeated
this procedure 10 times, and found that, on average, <6.27%
of the known motifs in these collections were similar to the
2684 random motifs (Table 1A).

We further focused on the predicted motifs in GM12878
and K562, as ENCODE generated more TF-based ChIP-
seq data in these two cell lines. The ENCODE project pre-
dicted 36 motifs in GM12878 and 47 motifs in K562 and
stored them in FactorBook (33), by predicting five motifs
in the 100-bps regions around the summits of the top 500
peaks in each TF-based ChIP-seq dataset. We found that
20 out of 36 motifs in GM12878 and 33 out of 47 mo-
tifs in K562 were similar to the predicted motifs in the two
cell lines (Table 1B). The missed FactorBook motifs were
likely because the motifs represented by TFBSs in the top
500 peaks were slightly different from those from all peaks.
Since ENCODE used only the top 500 peaks, we applied a
popular tool DREME (14) to all peaks of the same ChIP-
seq datasets to identify five motifs in each dataset. DREME
predicted 195 and 259 motifs in the two cell lines (Supple-
mentary file S5). We found that about 76.41 and 80.69% of
the top motifs predicted by DREME on TF-based ChIP-
seq datasets were similar to our predicted motifs in DHS
datasets of the corresponding cells (Table 1B). We also com-
pared the predicted motifs with the motifs identified by
Kheradpour et al. in these ChIP-seq datasets (35). We found
that 64.18 and 67.19% of the motifs identified by Kher-
adpour et al. (35) were similar to our predicted motifs in
the corresponding cells (Table 1B). Because peak regions
from individual TF-based ChIP-seq experiments were of-
ten under-represented in DHSs from a DNase-seq experi-
ment under the same condition, the above comparisons sug-
gested that SIOMICS can identify under-represented motifs
with high accuracy. It also implied that the majority of mo-
tifs identified directly from TF-based ChIP-seq experiments
were included in our prediction based on DHSs under the
same conditions.

It is also worth mentioning that most predicted motifs
were also similar to known motifs (Supplementary file S4).
We observed that 2258 (84.13%) of the 2684 predicted mo-
tifs were similar to at least one motif in the seven motif
collections. We considered these 2258 predicted motifs as

known motifs. A total of 379 of the 426 remaining motifs
were similar to at least one motif in the seven collections
together with the JASPAR 2010 All Collection with TOM-
TOM E-value < 1 or STAMP E-value < 1E-4. Only 47 pre-
dicted motifs were likely new motifs that were not similar
to any motif with TOMTOM E-value < 1 or STAMP E-
value < 1E-4. Such a high percentage (>84.13%) of motifs
similar to known motifs indicated that the predicted motifs
were likely biologically meaningful.

To evaluate whether the predicted motifs may also rep-
resent motifs other than TF binding DNA motifs, we com-
pared the predicted motifs with the 244 RNA-binding mo-
tifs described in (36). We found that 65.98% of RNA mo-
tifs in (36) were similar to the 2684 motifs. Moreover, 654
(24.37%) out of the 2684 predicted motifs were similar to at
least one RNA motif.

The 47 new motifs are likely functional

To investigate the functionality of the 47 new motifs, we
studied the functions of their cofactors in the predicted mo-
tif modules. For every new motif, we collected all predicted
motif modules containing at least two known motifs and
this new motif. We then examined whether the known mo-
tifs in a motif module shared functions described by sim-
ilar gene ontology (GO) terms using GOTermFinder (50).
If yes, we checked whether target genes of the motif mod-
ules significantly shared similar GO terms. Here the target
genes of a motif module were approximated as the genes
closest to the DHSs containing TFBSs of the motif mod-
ule. We found that for 43 out of the 47 new motifs, their co-
factors shared similar functions and such shared functions
were also shared by their target genes, which implied that
the new motifs may have similar functions to those of their
cofactors.

For instance, in the dataset 117 fKidney renal pelvis-
DS20448, the adjusted motif M699 was found in mul-
tiple motif modules with three known cofactor motifs,
TCF12, TFAP2C and SMARCB1. TCF12, TFAP2C and
SMARCB1 share several GO terms related to positive reg-
ulation of metabolic process, such as GO:0010604 (posi-
tive regulation of macromolecule metabolic process) and
GO:0051173 (positive regulation of nitrogen compound
metabolic process). Consistently, the target genes of the mo-
tif modules formed by M699 and the motifs of the three TFs
significantly shared the functions GO:0010604 (multiple
comparison corrected P-value 6.71E-04) and GO:0051173
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Table 1B. Known motifs in GM12878 and K562 were included in our prediction

#Motifs predicted Collection
#Motifs in the
collection

#Motifs in the
collection predicted

%Motifs in the collection
predicted

factorbook gm12878 36 20 55.56
GM12878 961 dreme gm12878 195 149 76.41

Kheradpour
et al. gm12878

67 43 64.18

factorbook k562 47 33 70.21
K562 953 dreme k562 259 209 80.69

Kheradpour
et al. k562

64 43 67.19

(multiple comparison corrected P-value 1.03E-05) (50).
Such a consistency of functions of cofactors and target
genes supported the functionality of the motif modules in
metabolic regulation. It also strongly implied that the new
motif was functional and possessed similar functions to
those of the cofactors.

TFBSs of 45.81% motifs prefer to occur in specific genomic
regions

To see which type of genomic regions the predicted motifs
prefer to bind, we compiled 16 types of genomic regions and
calculated the enrichment P-value of every motif in each
type of regions. We found that on average, TFBSs of 45.81%
of motifs in a dataset preferred to occur in specific types of
genomic regions (Figure 2A).

Figure 2A showed the number of motifs enriched in
different types of regions in two representative datasets,
GM12878 and K562. We observed that motifs enriched in
proximal regions (proximal TSSs, proximal TTSs, 3′ UTRs,
5′UTRs and first introns) were rarely enriched in distal re-
gions (all types of 5′ and 3′ distal regions and other introns).
For instance, 152 and 177 motifs were enriched in proxi-
mal regions and distal regions in GM12878, respectively,
whereas only one motif was enriched in both types of re-
gions (Figure 2B). Similarly, this was true for K562 (Figure
2C) and other datasets.

We also noticed that motifs enriched in 5′ distal regions
often preferred to bind regions more distant to TSSs. Sim-
ilarly, motifs enriched in the 3′ distal regions often pre-
ferred to bind regions more distant to TTSs. For example,
in GM12878, 88 motifs were enriched in 5′ >2.5 kb distal
regions, 78, 68 and 65 of which were enriched in 5′ >5, >10
and >20 kb distal regions, respectively. Similarly, in K562,
49 motifs were enriched in 5′ >2.5 kb distal regions, 43, 41
and 36 of which were enriched in 5′ >5, >10 and >20 kb
distal regions, respectively.

Genomic region enrichment analysis also revealed other
new features of motifs: motifs enriched in proximal TTSs
were often enriched in proximal TSSs, and motifs enriched
in 3′ distal regions were often enriched in 5′ distal regions.
In fact, for all 349 datasets, on average, 87.60% of proxi-
mal TTS enriched motifs were also proximal TSS enriched
(maximum 97.67%, minimum 57.14%). Although in general
fewer motifs were enriched in proximal TTSs than those in
proximal TSSs, an average of 58.89% of proximal TSS en-
riched motifs were still proximal TTS enriched. Moreover,
on average, 64.53% of 5′ distal enriched motifs were also
3′ distal enriched, and 80.38% of 3′ distal enriched motifs

were also 5′ distal enriched (Supplementary file S6). Because
proximal TTS regions may overlap with proximal TSS re-
gions and 3′ distal regions may overlap with 5′ distal re-
gions, we further generated a list of ‘pure’ proximal TSS,
proximal TTS, 5′ distal and 3′ distal regions (‘Materials
and Methods’ section), and repeated the same enrichment
analyses. We found that on average, 58.81% of ‘pure’ prox-
imal TTS enriched motifs were still ‘pure’ proximal TSS
enriched, and 38.25% of ‘pure’ 3′ distal enrichment motifs
were ‘pure’ 5′ distal enriched. Note that the dramatic de-
crease of the shared enriched motifs by ‘pure’ 3′ distal re-
gions and ‘pure’ 5′ distal regions was caused by the removal
of middle regions between all pairs of adjacent genes on
the strands, which prevents from the consideration of many
shared enriched motifs. Despite the percentage decrease of
shared motifs (58.81 versus 87.60% for ‘pure’ proximal TTS
enriched motifs and 38.25 versus 80.38% for ‘pure’ 3′ dis-
tal motifs), a large percent of ‘pure’ proximal TTS enriched
motifs are still ‘pure’ proximal TSS enriched, and a large
fraction of motifs enriched in ‘pure’ 3′ distal regions are still
enriched in ‘pure’ 5′ distal regions.

The predicted genomic region enrichment of motifs was
also supported by the literature. For instance, typical core
promoter TFs such as E2F4, E2F6, MAX, SP1 and SP2
were shown to have significant proximal promoter bias (43),
which agreed with our predictions in GM12878 and K562.
The predicted cell-specific TFBS enrichment of HNF4A in
HepG2 but not in GM12878, K562, HeLa and H1-hESC,
perfectly agreed with a recent study (51).

The predicted motif modules contain motifs of most known
interacting TFs

To validate the predicted motif modules, we compared TF
pairs corresponding to the predicted motif pairs in motif
modules with known interacting TF pairs from eight re-
sources (Table 2). The TF corresponding to a predicted
motif was determined as the TF whose motifs in HOCO-
MOCO were most similar to this predicted motif (32). We
found that on average, 84.23% of known interacting TF
pairs in each resource were included in our predictions (Ta-
ble 2). Such a high percentage strongly supported the near-
comprehensiveness of our predictions. It also demonstrated
the good accuracy of SIOMICS and the functionality of the
predicted motif modules.

We also found that between 12.55 and 24.40% of the pre-
dicted motif pairs in a dataset were supported by known
interactions (Supplementary file S7). For example, 1336
(15.57%) of the 7196 potential TF–TF interaction pairs
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Figure 2. (A) The number of motifs enriched in different types of regions. (B) The overlap of motifs enriched in distal and proximal regions in GM12878.
(C) The overlap of motifs enriched in distal and proximal regions in K562.

Table 2. Most known interacting TF pairs were included in our predictions

Resources
#Interactions in the
resource

#Interactions in the
resource related to TFs in
our study

# Known interactions
discovered

%Known interactions
discovered

BioGRID 155 100 2769 2357 85.12%
DIP 3060 90 87 96.67%
HPRD 39 184 1397 1174 84.04%
IntAct 267 000 931 673 72.29%
MINT 25 756 198 174 87.88%
PIPs 78 613 1265 1027 81.19%
Gerstein, M. B. et al. 519 691 13 211 10 876 82.33%
Ravasi, T. et al. 5238 1278 1078 84.35%

discovered in GM12878 were verified by known interac-
tions. The percentages of the predicted modules validated
are likely under-estimated, due to the limited number of ex-
perimentally confirmed TF–TF interactions available (Ta-
ble 2). It is also possible that co-binding events identified in
a portion of the predicted modules may not represent inter-
actions between TFs. For instance, in a motif module com-
posed of motifs of three TFs, two TFs may not interact with
each other while both interact with the third one.

The discovered motifs accurately classify different types of
DHS datasets

We investigated whether the 2684 non-redundant motifs
could predict the cell and tissue types of the DHS datasets.
The 349 datasets were grouped into 30 types (Supplemen-
tary file S1), among which 16 types had seven or fewer
datasets (eight types each had only one dataset). We ex-

cluded the types with seven or fewer datasets, as their sam-
ple sizes may be too small to reliably classify datasets (26).
In this way, we obtained 310 datasets from 14 cell or tissue
types to be classified (Supplementary file S1).

We built a support vector machines (SVM) classification
model using the sequential minimal optimization (SMO) al-
gorithm (52,53) to classify the 310 datasets using 10-fold
cross validation. In total, 252 (81.29%) of the 310 datasets
were correctly classified (Figure 3A). The highest, lowest
and median accuracy in the 10-fold validation was 93.55,
67.74 and 80.65%, respectively. We further performed the
receiver operating characteristic (ROC) analysis of these 14
classes by pairwise comparison. We compared each class
with all other classes (54). The area-under-curve (AUC)
scores for the 14 classes ranged from 0.943 to 1, with a
weighted AUC score of 0.973 (Figure 3B, Supplementary
file S8). For the 58 ‘misclassified’ datasets, six from fThymus
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Figure 3. (A) Classification of 310 datasets using 2684 motifs. (B) Individual ROC curves for four tissue types.

were predicted as Hematopoietic. This may be explained
by the so-called ‘extramedullary haematopoiesis’, which
shows that the liver, thymus and spleen may resume their
haematopoietic function if necessary (55). Moreover, nine
datasets from epithelial were classified as fibroblast. This
misclassification may be explained by the process called
epithelial-mesenchymal transition, in which epithelial cells
can give rise to fibroblasts (56). In addition, 24 datasets from
different fetal tissues were classified as other types of fetal
tissues. For instance, six datasets from ‘fStomach’ were mis-
classified as ‘fKidney’. This type of misclassification of dif-
ferent fetal tissues might be caused by the biological simi-
larity of different fetal tissue types. The remaining 19 ‘mis-
classified’ datasets may represent the classification errors or
the unknown similarities of the cell or tissue types.

DISCUSSION

We applied SIOMICS (21) to discover DNA motifs in 349
DHS datasets. On average, we identified 1083 motifs and
376 743 motif modules in one dataset. The identified mo-
tifs were clustered into 2684 non-redundant motifs. Com-
pared with known motifs, more than 84.13% of the pre-
dicted motifs were similar to known motifs. Conversely,
54.02 to 75.95% of known motifs were similar to the pre-
dicted motifs. Compared with known TF–TF interactions,
more than 12.55% of predicted motif pairs in motif mod-
ules corresponded to the motif pairs of known interacting
TF pairs, and on average 84.23% of known interacting TF
motifs were represented in the predicted motif modules. We
also showed that the predicted motifs reliably classified dif-
ferent types of DHS datasets. Our predictions demonstrated
the powerfulness of the SIOMICS method and provided
valuable information for future studies on gene transcrip-
tional regulation in these cells and tissues.

Approximately 1500 sequence-specific binding TFs are
known in the human genome while we predicted 2684 mo-
tifs. This paradox may be partially explained by the follow-
ing three factors. First, certain TFs bind motifs of different
forms (4,31). For instance, two motifs, nrMotif677 and nr-
Motif2540, were similar to different HSF1 motifs in HO-
COMOCO (HSF1 f1 and HSF1 do with STAMP E-values
1.0266E-9 and 2.61E-07, respectively). However, the two
predicted motifs were completely different from each other
and thus counted as two different motifs. Second, the clus-
tering procedure we applied is imperfect. The problem of
clustering similar motifs with complete linkage is an NP-
hard problem, because this problem is similar to the NP-
hard problem of identifying all cliques in a graph. In other
word, we had to take a polynomial time procedure in clus-
tering, which affected the resulted 2684 motifs. Third, mo-
tifs other than the TF binding motifs exist in DHSs, as
65.98% of known RNA motifs were shown to be similar to
our predicted motifs.

Even with the comprehensive prediction of motifs, sev-
eral issues may still prevent from accurate TFBS predic-
tion in DHSs. These issues include the largely unknown
competition and cooperation of TFs and other regulatory
proteins, the elusive features of weak TFBSs that may de-
pend on both TF concentration and others, etc. Therefore,
although the motifs and motif modules predicted in this
study are likely highly reliable, the predicted TFBSs still
need significant refinement. For instance, SIOMICS pre-
dicted only 31.90% of CTCF (CCCTC-binding factor) TF-
BSs and 18.56% of EGR-1 (Early growth response protein
1) TFBSs in K562, compared with the prediction of 44.74%
of CTCF TFBSs and 12.16% of EGR1 TFBSs in K562 by
centipede (57), a popular method for TFBS discovery (Sup-
plementary file S9).
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The time and space cost of predicting motifs by
SIOMICS on the 349 DHS datasets was relatively low. In
a dataset of an average size, there were 169 744 sequences
of 903 bps long. The average running time on one dataset
by SIOMICS was 93 CPU hours on a compute core of In-
tel Xeon 64-bit processor (Quad Core at 3.0 GHz and 4GB
RAM for each core). We neglected DHS regions longer
than 5000 bps in our analyses, not because SIOMICS could
not handle these long sequences, but because these long se-
quences significantly increased the SIOMICS running time.

We also built an SVM classification model using the
SMO algorithm to classify the 341 datasets into 22 types
using 10-fold cross validation (the eight types with only
one dataset excluded). We found that 248 (72.73%) of the
341 datasets were correctly classified. For the misclassi-
fied datasets, we found that all types with a small number
of datasets (<8) were misclassified. For instance, four out
of four Keratinocyte, three out of three fSpinal cord and
four out of four fPlacenta were misclassified. We thus dis-
carded these types of datasets and analyzed the remaining
310 datasets.

Although we strived to discover motifs of all active TFs
in each dataset, we may miss certain motifs (Supplemen-
tary file S10). To discover even more motifs in a dataset,
we could have required more than 2000 top 8-mer patterns
be considered for motif module discovery. In fact, we identi-
fied 2000 motif candidates in most datasets before adjusting
motif lengths, which implied that we could have considered
more top 8-mer patterns. However, we only considered the
top 2000 8-mer patterns in this study, because we wanted to
run SIOMICS with the same parameters on all datasets.

We provided a useful resource at http://server.cs.ucf.edu/
predrem/. This resource contains motifs, motif modules and
TFBSs predicted in 349 datasets from 30 different tissue or
cell types. This resource will be an important addition to
the current repositories of TFs and their interactions. It will
also serve as an excellent starting point for tissue-specific
gene transcriptional regulation studies.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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