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ABSTRACT

The CRISPR system has become a powerful bio-
logical tool with a wide range of applications. How-
ever, improving targeting specificity and accurately
predicting potential off-targets remains a significant
goal. Here, we introduce a web-based CRISPR/Cas9
Off-target Prediction and Identification Tool (CROP-
IT) that performs improved off-target binding and
cleavage site predictions. Unlike existing prediction
programs that solely use DNA sequence information;
CROP-IT integrates whole genome level biological in-
formation from existing Cas9 binding and cleavage
data sets. Utilizing whole-genome chromatin state
information from 125 human cell types further en-
hances its computational prediction power. Compar-
ative analyses on experimentally validated datasets
show that CROP-IT outperforms existing computa-
tional algorithms in predicting both Cas9 binding
as well as cleavage sites. With a user-friendly web-
interface, CROP-IT outputs scored and ranked list
of potential off-targets that enables improved guide
RNA design and more accurate prediction of Cas9
binding or cleavage sites.

INTRODUCTION

The CRISPR/Cas9 system is a bacterial immune response
system that has been adapted as an RNA-guided genome-
editing tool (1–3). Due to its simple design and high ef-
ficiency, application areas for this exciting technology are
ever expanding. The wild-type catalytically active Cas9 has
being used in a wide range of organisms for targeted gene
editing or for whole-genome genetic knockout screenings
(4–8). On the other hand, the catalytically inactive version
of Cas9 (dCas9) has even broader application areas such as
gene regulation (4,9–11), screenings of genome-scale gene
activation or repression (12), chromatin imaging (13) and
chromatin (14) and RNA pull down (15) purposes.

In the Type II CRISPR system of Streptococcus pyo-
genes, the most widely utilized CRISPR system, targeting
specificity is governed by 20-nt sequence of single guide
RNA (sgRNA) and a Protospacer adjacent motif (PAM)
sequence of NGG in the genomic sequence. Since the early
studies demonstrated CRISPR as RNA guided gene-editing
tool, multiple studies have assessed Cas9 targeting speci-
ficity (16–20) and concluded that CRISPR/Cas9 may cleave
certain off-target site by tolerating limited mismatches in
the PAM distal part of guiding RNA. Recently, others and
we mapped in vivo binding activity of catalytically inactive
Cas9 across the human and mouse genomes using ChIP-Seq
technology and assessed WT Cas9 mediated DNA double
strand breaks at the off-target binding sites (21–23). Fur-
thermore, additional genome-wide methods have been pro-
posed to monitor Cas9 mediated off-target cleavage sites
(24–26). The emerging conclusion from all these whole
genome off target Cas9 binding and cleavage studies sug-
gested that Cas9-DNA binding requirements are different
than Cas9 mediated DNA double strand breaks.

Importantly, CRISPR system is now adapted for multi-
ple purposes. While RNA guided DNA double stand break
activity of WT Cas9 is being heavily used for genome edit-
ing, DNA binding activity of catalytically inactive Cas9 is
adapted for wide range of completely different purposes in-
cluding gene regulation and chromatin pull down and imag-
ing. It is expected that this flexible tool will be further re-
purposed for novel applications. For existing as well as fu-
ture CRISPR applications, it is essential to maximize the
targeting specificity and monitor the potential off-target
Cas9 binding and cleavage sites in the genome. To this end,
multiple off-target prediction algorithms and tools have
been published for CRISPR system (16,27–34). Despite mi-
nor differences in their performance and respective output,
these tools are based on pure DNA sequence similarity in-
formation only. Most tools allow a limited number of mis-
matches when exploring potential off-target sites (16,31–33)
and yield a limited number of computationally predicted
off-target sites (16,28,31). Moreover, some tools report po-
tential off-target candidates without scoring or ranking the
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predictions (27,29). We previously noted that when solely
DNA sequence information is used, only a small fraction of
experimentally validated Cas9 bindings sites were predicted
(21). We therefore explored novel ways to achieve better
computational off-target prediction. In the light of recent
whole genome Cas9 mapping studies, we developed CROP-
IT tool that integrates knowledge from experimentally iden-
tified Cas9 binding sites, cleavage sites as well as chromatin
state information. CROP-IT scores each predicted Cas9 site
and outputs a user-defined list of top number of sites. The
CROP-IT algorithm is based on a computational model
where each position of the guiding RNA sequence is dif-
ferentially weighted based on experimental Cas9 binding
and cleavage site information from multiple independent
sources (21–24). Furthermore, it incorporates chromatin
state information for the human genome by analyzing ac-
cessible chromatin regions from 125 human cell types (35).
By integrating observed information from Cas9 DNA bind-
ing, CROP-IT performs significantly better than existing
computational prediction tools. CROP-IT provides a user-
friendly web site where users can design optimal sgRNA
guiding sequences and can search for potential off-target
binding or cleavage sites.

MATERIALS AND METHODS

CROP-IT algorithm

Our tool takes the target sequence from the user as input.
First, it aligns the target 20 bp sequence to the reference
genome selected by the user, using PATMAN (36). It al-
lows up to nine mismatches (binding) and six mismatches
(cleavage) in the resulting alignment candidates. We chose
these numbers because based on ChIP-Seq experiments,
Cas9 binding allows as many as 9–10 mismatches at the off-
target binding sites. On the other hand, whole genome Cas9
cleavage studies such as GUIDE-Seq experiments demon-
strate that the system allows lower number (6-7) of mis-
matches. The list of ∼3 000 000 alignments in average from
PATMAN is provided as input into our program that pro-
cesses and scores the sequences according to the algorithm
described below:

(i) Our program first performs a filtering step whereby solely
those sequences ending with ‘NGG’ and/or ‘NNG’ are
selected. Notably, the PAM sequence for CRISPR sys-
tem was initially proposed to be GGG. However, recent
studies show that NNG may also work as a PAM se-
quence. The unbiased off-target binding sites analysis of
ChIP-Seq data suggest that the system prefers GGG over
NGG, and NGG over NNG (21).

(ii) According to the selected PAM option, the sequences are
binned into separate files for each respective PAM output
and hence, the scoring of sequences takes place for each
file.

(iii) Next, in order to score alignment candidates, the first 20
bp (sequences without PAM) are divided into three seg-
ments of 5, 5 and 10 base pairs each respectively. Differ-
ent mismatch/match scores are applied for each of these
three segments.
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Figure 1. (A) Schematics of CROP-IT algorithm. Comparative analy-
sis of prediction performance of CROP-IT (B) Crispr.mit.edu (16); (C)
CRISPRSeek (28); (D) E-CRISP (31) and (E) CasOFFinder (29) for two
different sgRNAs: Nanog-sgRNA and PhC1-sgRNA. Y-axis indicates the
overlap between the maximum number of computationally predicted Cas9
binding sites for each tool and ChIP-Seq identified sites. The number of
sites mentioned under the X-axis is top N sites for CROP-IT to match the
number of predicted sites output by the other tool. For CasOFFinder, top
100 000 predicted sites (out of ∼6 000 000) were compared with those of
CROP-IT (F) Comparison of CROP-IT and Crispr.mit.edu based on over-
lapping Cas9 binding sites with top 10, 100 and 200 predicted sites for Phc1
and EMX1 sgRNAs.

(iv) Each nucleotide in the 20 bp region is compared to the
target sequence. In the event of a match, the program as-
signs a score si (where i = 1, 2,3) based on the segment it
belongs to and in the event of a mismatch, it looks for
a consecutive mismatch next to it. A penalty –si is as-
signed when there are two consecutive mismatches in the
20 bp region, whereas penalty

(−si
/

2
)

is assigned for a
single mismatch. The difference in penalty assignment is
based on our observation of the experimental data, where
Cas9 binding intensity was higher for sequences with
small number of consecutive mismatches as compared to
those with large number of such mismatches. This indi-
cates that the former types of sequences are more likely
to be off-target sites and therefore, are ranked higher in
our predicted list. Thus,
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Figure 2. Comparative analysis of prediction performances of CROP-IT
and CasOT (30) tools. Both CROP-IT and CasOT output substantial num-
bers of predicted sites. Thus, variable numbers of top predicted sites for
each tool (X-axis) are analyzed for overlap with (A) Nanog-sgRNA and
(B) PhC1-sgRNA mediated Cas9 bound ChIP-Seq sites from Wu etal. (22).
Y-axis indicates the overlap with ChIP-Seq identified sites.

assigned score,

S =
3∑

i=1

[
(n × si ) + (

m × (−si ) + k × (−si
/

2
))]

where, n = number of matches, m = number of consecu-
tive mismatches and k = number of single mismatches.

(v) The values of s depend on the segment to which the nu-
cleotide, being compared, belongs. Therefore, the first
segment, numbered 1, is assigned score s1 and penalty -s1.
Similarly, the second and the third segments are assigned
scores s2 and s3; and penalties -s2 and -s3 respectively.
The values of scores of all three segments were decided
by performing non-parametric optimization, which has
been described in subsequent section.

(vi) For consecutive mismatches belonging to separate seg-
ments, the program takes the mean of the penalties for
the two segments.

(vii) Once the scoring of every sequence is complete, the al-
gorithm generates output consisting of information de-
scribing the coordinates, sequences (with matches repre-
sented by capital letters), number of mismatches and as-
signed scores of each off-target site.

By allowing up to nine and six mismatches, our algorithm
is capable of exploring a much larger substring space lead-
ing to better sensitivity.

Weight optimization

The final string-match score is calculated as a weighted sum
of matching and mismatching from all three segments,

assigned score,

S =
3∑

i=1

[
(n × si ) + (

m × (−si ) + k × (−si
/

2
))]

where, n = number of matches, m = number of consecutive
mismatches and k = number of single mismatches.

With the help of ChIP-Seq data collected from previous
studies (21), we were able to learn the best values for weight
parameters [si, i = 1,2,3] through performing a grid-search
based optimization. Grid search strategy is a technique to
uniformly sample all possible values in order to decide the
optimal weights. For learning the weights for our basic algo-
rithm, we had to perform grid search on three parameters:
s1, s2 and s3. Initial starting values were selected randomly
(min = 0 and max = 20). Next, the max values were ex-
tended with uniform spacing based on the performance of
the algorithm on the sgRNA #4 dataset. For performance
evaluation, we calculated the overlap of top 1000 predicted
sites with actual ChIP-seq off-target sites. Max values were
extended until the number of correctly predicted sites was
reduced by 10 from the best performing number. This search
problem is multivariate in nature, as we are tuning for three
parameters and thus for t number of sampling values, our
search space is of size t3. Since this space is feasible to ex-
plore, we tried weight values from total enumeration of all
possible combinations of s1, s2 and s3. This grid search gave
the best performance for values s1 = 5, s2 = 70, s3 = 50.

Finally, the performance of our algorithm with the best
weight values was evaluated using independent test data
obtained from study on mouse genome (Nanog and Phc1
ChIP-Seq data) by (22), thus reducing the likelihood of bias
in our results.

Incorporation of DNase I-Seq chromatin state data

Based on our observations after overlapping off-target sites
with 125 cell type DNase I HS data, we decided to incor-
porate this information in our scoring system for human
genome (hg19). In order to accomplish this, we used the
trend line equation in graph in Figure 3A to differentially
weigh genomic regions according to their frequency of hav-
ing ‘open’ chromatin state in different cell types as measured
by DNase I Sequencing. This relationship is captured by the
additional score, which is summarized as follows.

Additional Score,

Sd = [0.0113 × X × d]

where, X = number of cell types with that DNase I site com-
mon and d = weight assigned to a sequence if it overlaps
with DNase I site and 0.0113 constant comes from the equa-
tion of the trend line in Figure 3A. Thus, after the initial
scoring of potential off-target sequences by our algorithm,
if the selected genome is human, we input the results into
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second round of scoring. Here, the additional score Sd is
added to the existing score, based on the site overlap with
125 cell type DNase I HS data. Therefore, our equation for
human genome off-target scoring becomes:

Final Score,

Sf = S + Sd

=
3∑

i=1

[
(n × si ) + (

m × (−si ) + k × (−si
/

2
))] + [0.0113 × X × d]

where, n = number of matches, m = number of consecutive
mismatches, k = number of single mismatches, X = num-
ber of cell types common overlapping DNase I site and d
= weight assigned to a sequence if it overlaps with DNase
I site. The value of weight d = 20 was finalized after per-
forming another round of grid search based non-parametric
optimization on existing ChIP-Seq data for sgRNA#4 (de-
scribed in previous section). CROP-IT now outputs an up-
dated ranked list of potential off-targets based on incorpo-
rated information from DNase I data. For cleavage site pre-
diction, we follow the procedure described above, beginning
with allowing six mismatches in the 20 bp target sequence.
While training on the cleavage site data, the weights ob-
tained were as follows: s1 = 20, s2 = 60, s3 = 50 and d = 10.
The training was performed using HEK293 Site 4 cleavage
sites from (24) and the performance evaluation was done on
VEGFA Site1, 2 and 3 respectively from the same study.

Comparative analysis with other tools

We analyzed performance of CROP-IT with other state-
of-the-art computational off-target prediction tools. These
can broadly be categorized into two groups of tools; (A)
that score off-targets (16,28,30,31,34) (B) do not score off-
targets (26). For group (A), if the number of predicted off-
targets were very large (>300 000), we took the top n (n =
500 to 10 000) ranked sites generated by the tool and CROP-
IT and intersected the coordinates of predicted sites with
those of ChIP-Seq data for the selected sgRNAs. We used
BEDTOOLS (37) intersect (−f = 1) command for this pur-
pose. For group (A) tools, where the number of predicted
sites was limited, we selected all the sites (N) from the re-
spective tool and chose the same number of top N sites
of CROP-IT output list and performed the intersection.
For group (B), we selected all predicted sites for CROP-IT
(∼100 000) and all the sites of the other tool for evaluation.
The results are reported as number of selected predicted off-
target sites and reported binding or cleavage-sites.

RESULTS

Several experimental methodologies that have been de-
signed to understand targeting specificity of CRISPR/Cas9
system highlighted that the PAM-proximal portion of
the guiding RNA is more critical for Cas9 targeting
(16,19,21,22). In line with these studies, recent whole
genome ChIP-Seq maps of catalytically inactive Cas9 bind-
ing sites (21,22) and independent whole genome Cas9 me-
diated cleavage detection assays such as HTGTS (25), Di-
genome-Seq (26), GUIDE-Seq (24) and IDLV capture (38)
tools have shown that the CRISPR system allows several
mismatches in the PAM-distal part of the guiding sequence.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125

Fr
ac

tio
n 

of
 o

ff
-t

ar
ge

ts
 a

t D
N

as
e 

I H
S

 s
ite

s 

Number of cell types sharing particular DNase I HS sites 

dCas9 Offtarget Random genomic 

0.4

0.3

0.2

0.1

A

B

# 
of

 c
or

re
ct

ly
 p

re
di

ct
ed

 s
ite

s 

y=0.0113x

0 

50 

100 

150 

200 

250 

2000 4000 7000 10000 

sgRNA4 

0 

10 

20 

30 

40 

50 

60 

70 

EMX1 

2000 4000 7000 10000 

# 
of

 c
or

re
ct

ly
 p

re
di

ct
ed

 s
ite

s 

0 

20 

40 

60 

80 

100 

120 

140 

160 

VEGFA site2 

# 
of

 c
or

re
ct

ly
 p

re
di

ct
ed

 s
ite

s 

C

2000 4000 7000 10000 
0 

10 

20 

30 

40 

50 

VEGFA site3 

2000 4000 7000 10000 

# 
of

 c
or

re
ct

ly
 p

re
di

ct
ed

 s
ite

s 

Top CROP-IT predicted sites  Top CROP-IT predicted sites  

Top CROP-IT predicted sites  Top CROP-IT predicted sites  

CROP-IT w/ DnaseI CROP-IT Algorithm 

Figure 3. Incorporating the contribution of chromatin structure to
CROPT-IT algorithm. (A) Percent overlap between Cas9 ChIP-Seq sites
(n = 2600) with DNase I-seq identified DNase I hypersensitive sites (HS)
from 125 different human cell types. Error bars indicate the s.d. of 1000
computational simulations for randomly selected 2600 genomic sites. X-
axis display different bins of HS sites according the frequency of observa-
tion in different number of cell types. Comparison of outputs from imple-
menting CROP-IT with DNase I chromatin state information and CROP-
IT without chromatin information by overlapping (B) Cas9 binding sites
and (C) Cas9 cleavage sites with predicted sites. Top 2000, 4000, 7000 and
10 000 computationally predicted sites are analyzed.

These results also highlight the importance of monitoring
both off-target binding as well as off-target cleavage activ-
ity of CRISPR system. Because RNA guided DNA bind-
ing activity of catalytically inactive Cas9 has wide range of
applications independent of genome editing activity of cat-
alytically active WT Cas9, CROP-IT has been devised to in-
corporate these experimentally validated features in its pre-
diction algorithm. As summarized in Figure 1A, CROP-IT
starts searching for potential off-target sites by allowing up
to nine mismatches for binding sites and six mismatches for
cleavage sites, in the 20-nt portion of the guiding sequence.
The identified sites with NGG PAM sequence are scored
based on a weighted computational simulation from non-
parametric scoring algorithm using whole genome Cas9
ChIP-Seq binding data and GUIDE-Seq cleavage data
sets from three independent sources (21,22,24). This novel
string-matching method combines the matching and mis-
matching events from local segments into a weighted score,
where the weights are learned through a grid-search based
optimization strategy. Notably, we obtained optimum re-
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sults when the guiding sequence of sgRNA is divided in
to three parts: the PAM distal 10 bp seed sequence, the 5
bp middle sequence and the 5 bp PAM proximal sequence.
Thus, by differentially weighting matches and mismatches
in these three regions of sgRNA guiding sequence, CROP-
IT scores and then ranks the identified off-target binding
and cleavage sites.

CROP-IT outperforms existing tools

After training weights of the algorithm on experimentally
identified ChIP-Seq binding sites (21), we tested it and com-
pared the prediction power of CROP-IT to previously pub-
lished five different computational tools using data from
independent Cas9 binding ChIP-Seq experiment datasets
from Wu et al. (22) and Duan et al. (23). We used ChIP-
Seq validated whole genome Cas9 binding sites guided by
three sgRNAs; Nano-sgRNA (5957 ChIP-Seq sites) and
Phc1-sgRNA (2948 ChIP-Seq sites) from Wu et al. (22) and
EMX1 sgRNA (113 ChIP-Seq sites) from Duan et al. (23).
Each tool reports different numbers of predicted off-target
sites. Thus to effectively compare them, we took the max-
imum number of off-target predicted sites from each tool
and compared them with the same number of sites from
CROP-IT predicted ranked list. The computationally pre-
dicted sites were then overlapped with the experimentally
identified ChIP-Seq Cas9 binding sites. Notably, using these
validated Cas9 binding sites as gold standard, CROP-IT
performs substantially better than other tools (Figure 1B–
E). To understand CROP-IT’s performance compared to
other tools when only limited number of top sites are con-
sidered, we performed evaluations with top 10, 100 and 200
predicted sites for Crispr.mit.edu tool (16) and CROP-IT.
Figure 1F indicates that CROP-IT gives better performance
when limited number of top sites are included. In cases
where a substantial number of ranked off-targets are out-
putted, for example CasOT tool (30), different ranges of the
top predicted sites were compared and CROP-IT predicted
significantly higher number of sites (P < 0.005; two sample
test) (Figure 2). Interestingly, we observe positive correla-
tion between CROP-IT scores and scores from other com-
putational tools (Supplementary Figure S1A and B) how-
ever, there seems to be no clear correlation between the com-
putational score intensity and the limited number of exper-
imentally validated sites (Supplementary Figure S1C). In
addition to using ChIP-Seq validated Cas9 binding sites as
a gold standard data, our results show that CROP-IT also
outperforms other tools when commonly predicted sites
from multiple tools are chosen as a gold standard (Supple-
mentary Figure S1D).

Incorporating chromatin state further improves CROP-IT
prediction power

Whole-genome mapping of Cas9 binding sites showed that
chromatin structure is a major component of CRISPR tar-
geting specificity (21,22). Thus, we wanted to see if incor-
porating the chromatin state information into the CROP-
IT scoring algorithm further improves its prediction power.
To this end, we analyzed DNase I-Seq chromatin accessibil-
ity data from 125 human cell types (35). DNase I-Seq is a

method that identifies ‘open chromatin’ sites at the whole
genome level by mapping DNase I accessible chromatin
sites (39). To better understand the contribution of chro-
matin structure and make this additional information ap-
plicable to wider range of different human cell types, we
divided open chromatin regions (DNase I-Seq peaks) into
genomic bins. These bins were then ranked according to
the frequency that they appeared in different cell types. We
then calculated the overlapping frequency of >2600 ChIP-
Seq identified Cas9 binding sites from 12 sgRNAs in human
genome (21) in these genomic bins. As a control, we simu-
lated random regions (n = 2600) 1000 times and performed
the same analysis. Importantly, genomic regions that are
commonly open in more cell types have significantly higher
probability of Cas9 binding (P-value = 2.82E-15) (Figure
3A).

Therefore, in order to differentially weigh genomic region
according to the chromatin state information, we added an
additional scoring parameter, d, in our scoring assignment
algorithm to incorporate this information. This parameter
differentially increases the score of predicted sites depend-
ing on the number of cell types displaying ‘open’ chromatin
conformation for the predicted site. This additional score
assignment generates a newly ranked list of predicted se-
quences. Since 125-cell type DNase I-Seq data is available
only for the human genome, this extra feature of CROP-IT
is currently available for human studies only. Re-scoring off-
target sites based on chromatin state information showed
consistent improvement of prediction performance for both
off-target Cas9 binding sites (Figure 3B) and cleavage sites
(Figure 3C). Also, the execution time per predicted sites is
comparable to, if not better than, other tools (Supplemen-
tary Figure S2A). Notably, using HEK293 cell type specific
DNase I Seq data, with re-trained weights, yielded compa-
rable result to aggregate DNase I Seq data from 125 cell
types (Supplementary Figure S2B).

Evaluation of CROP-IT prediction performance for off-
target cleavage sites

The above comparisons were done using catalytically inac-
tive Cas9 ChIP-Seq binding data as gold standard. Predict-
ing off-target Cas9 binding is important for experimental
purposes where catalytically inactive Cas9 is repurposed for
gene regulation, chromatin imaging and pull down. How-
ever, for genome editing purposes, it is imperative to identify
off-target Cas9 cleavage sites. Thus, we evaluated CROP-
IT’s prediction performance of Cas9 off-target cleavage
sites. To achieve this, we trained CROP-IT algorithm on
the datasets recently generated by the GUIDE-Seq technol-
ogy (24) which is an experimental approach used to iden-
tify whole genome level Cas9 mediated off-target cleavage
sites. The training was done using the sgRNA4 cleavage
sites (HEK293 Site 4) and performance evaluation was per-
formed on data from three sites; VEGFA Site 1 (21 cleavage
sites), VEGFA Site 2 (151 cleavage sites) and VEGFA Site
3 (59 cleavage sites). During the training we observed dif-
ferent weights being assigned to the three segments of the
20 bp sequence, however, following similar trend to that of
off-target binding sites. We evaluated the performance of
CROP-IT on three independent experimental Cas9 cleavage
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Figure 4. Comparative analysis of prediction performances of CROP-IT
with (A) Crispr.mit.edu (16) and (B) E-CRISP (31) on GUIDE-Seq iden-
tified cleavage (24). Since each tool outputs different number of predic-
tions, the same of sites for each tool were compared to the same num-
ber of CROP-IT predicted sites picked from the top of ranked list. Y-
axis indicates the overlap with GUIDE-Seq identified Cas9 cleavage sites.
(C) Comparative analysis of prediction performances of CROP-IT and
Crispr.mit.edu (16) on cleavage sites identified through experimental HT-
GTS (25) and Di-genome-Seq (26) approaches for VEGFA site. Y-axis
indicates the overlap with sites identified by each study. (D) Compari-
son of experimentally verified and different number of top sites predicted
by CROP-IT. Y-axis indicates the percent overlap with total GUIDE-Seq
identified Cas9 cleavage sites (indicated in X-axis). (E) Similar analysis pre-
sented in (D) was performed for HTGTS (25) and Di-genome Sequencing
(26) identified Cas9 cleavage sites for VEGFA targeted guiding RNA. Y-
axis indicates the percent overlap with total experimentally identified Cas9
cleavage sites and CROP-IT predicted top off-target sites (indicated in X-
axis).

data sets generated by GUIDE-Seq (24), HTGTS (25) and
Di-genome-Seq (26) approaches. CROP-IT performs better
than state-of-the art tools Crispr.mit.edu (16) (Figure 4A)
and E-CRISP (31) (Figure 4B). Notably, for the sgRNA tar-
geting VEGFA site, recent whole genome off-target cleavage
data was generated using HTGTS (25) (39 sites) and Di-
genome-Seq (26) (87 sites) approaches. Comparing predic-
tion of experimentally validated data from these two inde-
pendent approaches, CROP-IT predicts substantially more
number of cleavage sites (Figure 4C). Similar to previous
analysis, we selected the top N sites from CROP-IT’s out-
put based on the number of sites output by the two tools for
comparison. Unlike other tools, CROP-IT outputs signifi-
cantly larger number of ranked potential off-target cleav-
age sites, thus, allowing users to define their own thresholds
for the number of predicated sites. As expected, increasing
the number of computationally predicted sites for output
increases the probability of correctly predicting the actual
off-target cleavage sites identified by GUIDE-Seq (24) (Fig-
ure 4D) as well as HTGTS (25) and Di-genome-Seq (26)
approaches (Figure 4E). Our results presented in this study

show, in principle, that integrating novel biological informa-
tion into a computational algorithm significantly increases
the accuracy and power of computational prediction.

DISCUSSION

In addition to being a simple, efficient and versatile gene-
editing tool, the CRISPR technology has been repurposed
to achieve gene regulation, epigenetic chromatin manipu-
lation and chromatin imaging. Thus, there is intense in-
terest from a broad range of scientific community in the
utilization of this technology. One major goal in design-
ing the CRISPR/Cas9 experiments is to achieve the max-
imal targeting specificity and identify and monitor poten-
tial off-target sites. To serve this purpose, a number of com-
putational tools have been designed to explore potential
off-target sites based. In contrast to previous CRISPR de-
sign and off-target prediction tools that are based on guide
RNA sequence similarity only, CROP-IT algorithm inte-
grates crucial information obtained from experimentally
validated Cas9 binding and cleavage sites from multiple in-
dependent studies (21,22,24) and chromatin state informa-
tion from 125 different human cell types from diverse types
and origins. CROP-IT has been devised to predict both
Cas9 off-target binding sites as well as Cas9 off-target cleav-
age sites. Although the algorithm is same, the scores given
for Cas9 binding site prediction is slightly different than the
scores for Cas9 cleavage sites. Comparative analysis shows
that CROP-IT outperforms existing computational tools
in predicting both the actual Cas9 off-target binding sites
as well as cleavage sites. Notably, CROP-IT currently uses
only DNase I-Seq chromatin state information from 125 cell
types. Including additional cell type specific chromatin in-
formation such as post-translational histone tail modifica-
tions and DNA methylation status might further improve
the prediction power of CROP-IT for a given cell type.

It should be noted that despite substantial improvements,
the ability of computational prediction tools to predict
all potential CRISPR/Cas9 binding sites remains limited.
Nevertheless, computational algorithms are fast and free
tools that can be explored to monitor both intended and
unintended Cas9 target sites. It is natural to anticipate that
as we learn more about the determinants and mechanism
of Cas9 targeting specificity and cleavage activity, the pre-
diction algorithms will also improve. To accommodate such
improvements in the future, CROP-IT has flexibility in its
scoring scheme for including new biological information.
Our study shows a proof-of-principle that taking such addi-
tional information into account in addition to sole sequence
identity is a way to improve predictions and should be an
area of additional research.

AVAILABILITY

To make CROP-IT available for a broader scientific com-
munity, we made it available as a web application tool
at http://www.adlilab.org/CROP-IT/homepage.html. Along
with prediction of off-target binding and cleavage sites,
CROP-IT also provides a feature for designing optimal
sgRNA guiding sequences in which users may provide a ge-
nomic region of interest (up to 250 bp) and, in response, the
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tool performs a comparative analysis of potential targeting
sites to predict the sgRNA guiding sequence with minimal
off-target effects. CROP-IT takes ∼40 and ∼20 min to gen-
erate list of predicted binding and cleavage sites respectively,
which are e-mailed to the user. The results are presented in a
tab delimited file with genome coordinates of the off target
site, its sequence, total number of mismatches (mismatches
are represented as lower case letters), assigned score and the
overlapping gene information.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

M.A. designed the study; M.A. and R.S. developed the tool
and wrote the manuscript. R.S. performed in silico experi-
ments and C.K. performed the ChIP-Seq experiments. R.S.,
Y.Q., A.Q. and M.A. analyzed the data.

FUNDING

University of Virginia School of medicine; Pilot project (to
M.A) from NIH P50 DK096373 (Pediatric Center of Excel-
lence in Nephrology grant); V Scholar award from V can-
cer research foundation (to M.A.). Funding for open ac-
cess charge: V scholar Foundation; University of Virginia
School of Medicine.
Conflict of interest statement. None declared.

REFERENCES
1. Jinek,M., Chylinski,K., Fonfara,I., Hauer,M., Doudna,J.A. and

Charpentier,E. (2012) A programmable dual-RNA-guided DNA
endonuclease in adaptive bacterial immunity. Science, 337, 816–821.

2. Mali,P., Yang,L., Esvelt,K.M., Aach,J., Guell,M., DiCarlo,J.E.,
Norville,J.E. and Church,G.M. (2013) RNA-guided human genome
engineering via Cas9. Science, 339, 823–826.

3. Cong,L., Ran,F.A., Cox,D., Lin,S., Barretto,R., Habib,N., Hsu,P.D.,
Wu,X., Jiang,W., Marraffini,L.A. et al. (2013) Multiplex genome
engineering using CRISPR/Cas systems. Science, 339, 819–823.

4. Deveau,H., Barrangou,R., Garneau,J.E., Labonte,J., Fremaux,C.,
Boyaval,P., Romero,D.A., Horvath,P. and Moineau,S. (2008) Phage
response to CRISPR-encoded resistance in Streptococcus
thermophilus. J. Bacteriol., 190, 1390–1400.

5. Yang,H., Wang,H., Shivalila,C.S., Cheng,A.W., Shi,L. and
Jaenisch,R. (2013) One-step generation of mice carrying reporter and
conditional alleles by CRISPR/Cas-mediated genome engineering.
Cell, 154, 1370–1379.

6. Feng,Z., Zhang,B., Ding,W., Liu,X., Yang,D.L., Wei,P., Cao,F.,
Zhu,S., Zhang,F., Mao,Y. et al. (2013) Efficient genome editing in
plants using a CRISPR/Cas system. Cell Res., 23, 1229–1232.

7. Shalem,O., Sanjana,N.E., Hartenian,E., Shi,X., Scott,D.A.,
Mikkelsen,T.S., Heckl,D., Ebert,B.L., Root,D.E., Doench,J.G. et al.
(2014) Genome-scale CRISPR-Cas9 knockout screening in human
cells. Science, 343, 84–87.

8. Wang,T., Wei,J.J., Sabatini,D.M. and Lander,E.S. (2014) Genetic
screens in human cells using the CRISPR-Cas9 system. Science, 343,
80–84.

9. Qi,L.S., Larson,M.H., Gilbert,L.A., Doudna,J.A., Weissman,J.S.,
Arkin,A.P. and Lim,W.A. (2013) Repurposing CRISPR as an
RNA-guided platform for sequence-specific control of gene
expression. Cell, 152, 1173–1183.

10. Cheng,A.W., Wang,H., Yang,H., Shi,L., Katz,Y., Theunissen,T.W.,
Rangarajan,S., Shivalila,C.S., Dadon,D.B. and Jaenisch,R. (2013)
Multiplexed activation of endogenous genes by CRISPR-on, an
RNA-guided transcriptional activator system. Cell Res., 23,
1163–1171.

11. Perez-Pinera,P., Kocak,D.D., Vockley,C.M., Adler,A.F.,
Kabadi,A.M., Polstein,L.R., Thakore,P.I., Glass,K.A.,
Ousterout,D.G., Leong,K.W. et al. (2013) RNA-guided gene
activation by CRISPR-Cas9-based transcription factors. Nat.
Methods, 10, 973–976.

12. Gilbert,L.A., Horlbeck,M.A., Adamson,B., Villalta,J.E., Chen,Y.,
Whitehead,E.H., Guimaraes,C., Panning,B., Ploegh,H.L.,
Bassik,M.C. et al. (2014) Genome-scale CRISPR-mediated control of
gene repression and activation. Cell, 159, 647–661.

13. Chen,B., Gilbert,L.A., Cimini,B.A., Schnitzbauer,J., Zhang,W.,
Li,G.W., Park,J., Blackburn,E.H., Weissman,J.S., Qi,L.S. et al. (2013)
Dynamic imaging of genomic loci in living human cells by an
optimized CRISPR/Cas system. Cell, 155, 1479–1491.

14. Fujita,T. and Fujii,H. (2013) Efficient isolation of specific genomic
regions and identification of associated proteins by engineered
DNA-binding molecule-mediated chromatin immunoprecipitation
(enChIP) using CRISPR. Biochem. Biophys. Res. Commun., 439,
132–136.

15. O’Connell,M.R., Oakes,B.L., Sternberg,S.H., East-Seletsky,A.,
Kaplan,M. and Doudna,J.A. (2014) Programmable RNA recognition
and cleavage by CRISPR/Cas9. Nature , 7530, 263–266.

16. Hsu,P.D., Scott,D.A., Weinstein,J.A., Ran,F.A., Konermann,S.,
Agarwala,V., Li,Y., Fine,E.J., Wu,X., Shalem,O. et al. (2013) DNA
targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol.,
31, 827–832.

17. Mali,P., Aach,J., Stranges,P.B., Esvelt,K.M., Moosburner,M.,
Kosuri,S., Yang,L. and Church,G.M. (2013) CAS9 transcriptional
activators for target specificity screening and paired nickases for
cooperative genome engineering. Nat. Biotechnol., 31, 833–838.

18. Pattanayak,V., Lin,S., Guilinger,J.P., Ma,E., Doudna,J.A. and
Liu,D.R. (2013) High-throughput profiling of off-target DNA
cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat.
Biotechnol., 31, 839–843.

19. Fu,Y., Foden,J.A., Khayter,C., Maeder,M.L., Reyon,D., Joung,J.K.
and Sander,J.D. (2013) High-frequency off-target mutagenesis
induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol.,
31, 822–826.

20. Cho,S.W., Kim,S., Kim,Y., Kweon,J., Kim,H.S., Bae,S. and Kim,J.S.
(2014) Analysis of off-target effects of CRISPR/Cas-derived
RNA-guided endonucleases and nickases. Genome Res., 24, 132–141.

21. Kuscu,C., Arslan,S., Singh,R., Thorpe,J. and
Adli,M. (2014) Genome-wide analysis reveals characteristics of
off-target sites bound by the Cas9 endonuclease. Nat.
Biotechnol., 32, 677–683.

22. Wu,X., Scott,D.A., Kriz,A.J., Chiu,A.C., Hsu,P.D., Dadon,D.B.,
Cheng,A.W., Trevino,A.E., Konermann,S., Chen,S. et al.
(2014) Genome-wide binding of the CRISPR endonuclease Cas9 in
mammalian cells. Nat. Biotechnol., 32, 670–676.

23. Duan,J., Lu,G., Xie,Z., Lou,M., Luo,J., Guo,L. and Zhang,Y. (2014)
Genome-wide identification of CRISPR/Cas9 off-targets in human
genome. Cell Res., 24, 1009–1012.

24. Tsai,S.Q., Zheng,Z., Nguyen,N.T., Liebers,M., Topkar,V.V.,
Thapar,V., Wyvekens,N., Khayter,C., Iafrate,A.J., Le,L.P. et al.
(2015) GUIDE-seq enables genome-wide profiling of off-target
cleavage by CRISPR-Cas nucleases. Nat. Biotechnol., 33, 187–197.

25. Frock,R.L., Hu,J., Meyers,R.M., Ho,Y.J., Kii,E. and Alt,F.W. (2015)
Genome-wide detection of DNA double-stranded breaks induced by
engineered nucleases. Nat. Biotechnol., 33, 179–186.

26. Kim,D., Bae,S., Park,J., Kim,E., Kim,S., Yu,H.R., Hwang,J.,
Kim,J.I. and Kim,J.S. (2015) Digenome-seq: genome-wide profiling of
CRISPR-Cas9 off-target effects in human cells. Nat. Methods, 12,
237–243.

27. Naito,Y., Hino,K., Bono,H. and Ui-Tei,K. (2014) CRISPRdirect:
software for designing CRISPR/Cas guide RNA with reduced
off-target sites. Bioinformatics, 31, 1120–1123.

28. Zhu,L.J., Holmes,B.R., Aronin,N. and Brodsky,M.H. (2014)
CRISPRseek: a bioconductor package to identify target-specific
guide RNAs for CRISPR-Cas9 genome-editing systems. PLoS One,
9, e108424.

29. Bae,S., Park,J. and Kim,J.S. (2014) Cas-OFFinder: a fast and versatile
algorithm that searches for potential off-target sites of Cas9
RNA-guided endonucleases. Bioinformatics, 30, 1473–1475.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/43/18/e118/2414330 by guest on 20 M

arch 2024

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkv575/-/DC1


e118 Nucleic Acids Research, 2015, Vol. 43, No. 18 PAGE 8 OF 8

30. Xiao,A., Cheng,Z., Kong,L., Zhu,Z., Lin,S., Gao,G. and
Zhang,B. (2014) CasOT: a genome-wide Cas9/gRNA off-target
searching tool. Bioinformatics, 30, 1180–1182.

31. Heigwer,F., Kerr,G. and Boutros,M. (2014) E-CRISP: fast CRISPR
target site identification. Nat. Methods, 11, 122–123.

32. Sander,J.D., Maeder,M.L., Reyon,D., Voytas,D.F., Joung,J.K. and
Dobbs,D. (2010) ZiFiT (Zinc Finger Targeter): an updated zinc finger
engineering tool. Nucleic Acids Res., 38, W462–W468.

33. Montague,T.G., Cruz,J.M., Gagnon,J.A., Church,G.M. and Valen,E.
(2014) CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for
genome editing. Nucleic Acids Res., 42, W401–W407.

34. Cradick,T.J., Qiu,P., Lee,C.M., Fine,E.J. and Bao,G. (2014)
COSMID: a web-based tool for identifying and validating
CRISPR/Cas off-target sites. Mol. Ther. Nucleic Acids, 3, e214.

35. Thurman,R.E., Rynes,E., Humbert,R., Vierstra,J., Maurano,M.T.,
Haugen,E., Sheffield,N.C., Stergachis,A.B., Wang,H., Vernot,B. et al.

(2012) The accessible chromatin landscape of the human genome.
Nature, 489, 75–82.

36. Prufer,K., Stenzel,U., Dannemann,M., Green,R.E., Lachmann,M.
and Kelso,J. (2008) PatMaN: rapid alignment of short sequences to
large databases. Bioinformatics, 24, 1530–1531.

37. Quinlan,A.R. and Hall,I.M. (2010) BEDTools: a flexible suite of
utilities for comparing genomic features. Bioinformatics, 26, 841–842.

38. Wang,X., Wang,Y., Wu,X., Wang,J., Wang,Y., Qiu,Z., Chang,T.,
Huang,H., Lin,R.J. and Yee,J.K. (2015) Unbiased detection of
off-target cleavage by CRISPR-Cas9 and TALENs using
integrase-defective lentiviral vectors. Nat. Biotechnol., 33, 175–178.

39. Crawford,G.E., Holt,I.E., Whittle,J., Webb,B.D., Tai,D., Davis,S.,
Margulies,E.H., Chen,Y., Bernat,J.A., Ginsburg,D. et al. (2006)
Genome-wide mapping of DNase hypersensitive sites using massively
parallel signature sequencing (MPSS). Genome Res., 16, 123–131.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/43/18/e118/2414330 by guest on 20 M

arch 2024


