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ABSTRACT

Chromatin immunoprecipitation with massively par-
allel sequencing (ChIP-seq) is widely used to identify
binding sites for a target protein in the genome. An
important scientific application is to identify changes
in protein binding between different treatment condi-
tions, i.e. to detect differential binding. This can re-
veal potential mechanisms through which changes
in binding may contribute to the treatment effect.
The csaw package provides a framework for the de
novo detection of differentially bound genomic re-
gions. It uses a window-based strategy to summarize
read counts across the genome. It exploits existing
statistical software to test for significant differences
in each window. Finally, it clusters windows into re-
gions for output and controls the false discovery rate
properly over all detected regions. The csaw package
can handle arbitrarily complex experimental designs
involving biological replicates. It can be applied to
both transcription factor and histone mark datasets,
and, more generally, to any type of sequencing data
measuring genomic coverage. csaw performs favor-
ably against existing methods for de novo DB analy-
ses on both simulated and real data. csaw is imple-
mented as a R software package and is freely avail-
able from the open-source Bioconductor project.

INTRODUCTION

The ChIP-seq technique identifies protein–DNA interac-
tions by massively parallel sequencing of DNA bound to
a target protein. ChIP-seq is often used to find the bind-
ing sites of a transcription factor (TF) or to examine the
positioning of a histone mark across the genome. It is a
key tool for investigating the function of DNA-binding pro-
teins, for identifying novel DNA elements, and for studying
the molecular mechanisms of gene regulation. Traditional
analyses of ChIP-seq data involve identifying peaks of high

read density in the genome, using software like MACS (1),
HOMER (2) or SICER (3). These peaks represent putative
binding sites for the target protein. Binding sites are then
considered present or absent in each sample, allowing qual-
itative comparisons between DNA samples or experimental
conditions. An alternative strategy that is beginning to re-
ceive more attention is to identify quantitative changes in
the binding profile between experimental conditions, i.e. to
analyze differential binding (DB) (4–7). The DB approach
allows a more rigorous statistical analysis to be formulated.
It also focuses directly on sites that are associated with bio-
logical differences between the samples and hence may have
biological significance. By contrast, strongly bound sites de-
tected by peak calling may not necessarily be biologically
interesting if the intensity of binding does not change be-
tween treatment conditions.

One can discriminate between DB analyses for which the
genomic intervals over which DB is tested are specified in
advance and de novo analyses where the intervals are a pri-
ori unknown. Pal et al. (5) conducted a gene-oriented anal-
ysis of DB, whereby they tested for DB between cell popu-
lations at genomic intervals defined by the transcriptional
start and stop positions of each gene. This type of DB anal-
ysis can be performed using essentially the same statistical
methods as those used in a gene-based differential expres-
sion analysis of RNA-seq data (8,9). In many or most cases,
however, it is of interest to find differentially bound regions
anywhere in the genome without making any prior assump-
tions about the locations of the binding sites. For such de
novo DB analyses, statistically rigorous assessment of DB
is more subtle. This is because the genomic intervals over
which DB is tested have to be empirically determined from
the same data that is used to conduct those tests.

The earliest approach for de novo detection of differ-
entially bound (DB) regions has been to use MACS or
HOMER to call peaks from the data, and to use these em-
pirical peaks as the regions of interest. Read counts can be
obtained for each peak in each library, and analyzed with
software like edgeR (10) to identify significant DB between
conditions. This peak-based strategy is implemented in the
Bioconductor software packages DiffBind (4) and DBChIP
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(11). Despite its popularity, this strategy has some potential
problems that are not immediately obvious. We have shown
previously that calling peaks in individual libraries or treat-
ment groups can lead to loss of error rate control during
the DB analysis (12). This is because the definition of the
regions to be used for DB testing is not independent of the
DB status of those regions. Moreover, imprecise calling of
peak boundaries can decrease power to detect DB for sharp
features such as TF binding sites (12). Power can also be lost
for complex DB events involving changes in the shape of
the binding profile. Such events are not uncommon for pro-
tein targets with broad enrichment, e.g. when histone marks
shift or spread between conditions. Defining the entire site
as a single peak will only consider overall changes in bind-
ing across the site, and may not capture DB in a specific
subinterval of that site.

To avoid the biases and loss of resolution associated with
peak calling, the software packages USeq (13), diffReps (14)
and PePr (15) have implemented windowing strategies. Win-
dows of constant size are placed at regular intervals across
the genome, and each window is tested for DB. In this man-
ner, de novo detection can be performed while avoiding peak
calling altogether. This avoids problems with loss of error
control at the window level, as––unlike peaks––the win-
dows are defined independently from the data. To correct
for multiple testing, most of these packages attempt to con-
trol the false discovery rate (FDR) across windows. How-
ever, DB results are often interpreted at the level of aggre-
gated regions formed by combining groups of neighboring
windows, and none of the existing software packages are
able to control the FDR when DB discoveries are reported
in terms of regions. We have shown previously that simply
consolidating adjacent DB windows into DB regions leads
to a loss of FDR control, because a given FDR at the win-
dow level does not translate into the same FDR at the region
level (12).

Here we present csaw, a new window-based software
package for de novo DB analyses of ChIP-seq data as part
of the Bioconductor project (16,17). A key aim of csaw is
to provide statistically rigorous FDR control across the re-
ported regions. csaw tests for DB at the window level using
a quasi-likelihood approach that robustly accounts for bio-
logical variation between replicates (9,18). csaw then com-
bines P-values from adjacent windows in a manner that
maintains FDR control at the level of the consolidated re-
gions reported to the user.

The csaw package is designed to be flexible and modu-
lar. It assumes a replicated ChIP-seq experiment with at
least two experimental conditions, where multiple biolog-
ical replicates are present in at least one of the condi-
tions. Experimental designs of any complexity can be ac-
commodated, whether they involve multiple treatment fac-
tors, quantitative covariates, paired samples or batch ef-
fects. Similarly, any contrast between the treatment condi-
tions can be formulated and tested, including non-trivial
ANOVA-like or interaction-based contrasts.

csaw can be used with any type of ChIP-seq data, regard-
less of the protein target or whether sequencing is single-
or paired-end. csaw does not require genomic annotation.
csaw provides a range of normalization options, some not

Figure 1. Diagram of the simulation design for complex DB events. The
binding profile is comprised of subintervals A, B and C, each of width w

and offset from each other by w/2. DB is introduced by dropping one or
two subintervals in one of the groups, e.g. subinterval A is dropped in group
2, above.

available in any earlier software. It can be used with or with-
out negative control libraries such as input or IgG controls.

This article provides a brief description of the functional-
ity in the csaw package. Several simulations are performed
to highlight the advantages of using csaw over existing
methods for de novo DB detection. Comparisons are made
with a popular peak-based method, DiffBind, and with the
most recent of the window-based methods, PePr. csaw is
shown to provide greater or comparable detection power
while still maintaining FDR control. The ability of csaw to
detect complex DB events is demonstrated with a case study
on real H3K4me3 data. These results show that csaw is a vi-
able alternative for DB analyses of ChIP-seq datasets.

MATERIALS AND METHODS

Simulated datasets

Simulations were conducted to demonstrate the perfor-
mance of csaw and other software tools in a range of sit-
uations. Separate simulations were conducted to represent
the type of binding events typical of histone marks and
TFs respectively. In the latter case, relatively sharp peaks
were simulated. In the former case, relatively broad peaks
were simulated, with special attention given to complex DB
events in which the bound region may be extended or al-
tered between conditions. Here we describe the design de-
tails of each simulation setup. Complete code necessary to
reproduce these simulations can be downloaded from http:
//bioinf.wehi.edu.au/csaw.

Complex DB events. A histone mark ChIP-seq experiment
was simulated with two biological replicates in each of two
groups. A total of 20 000 binding sites spaced 10–20 kbp
apart were simulated on one chromosome. To construct a
complex event, the binding profile for each site was charac-
terized as a mixture of three subintervals (Figure 1). Each
subinterval was parameterized as a scaled Beta(2, 2) distri-
bution with width w = 500 bp. A Beta distribution was cho-
sen to generate a smooth binding profile, consistent with
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real data. For each subinterval at site i, the number of reads
in each library was sampled from a negative binomial (NB)
distribution with a mean of 30 and a dispersion of �i. This
choice of mean corresponds to a binding site of moderate
intensity, such that sufficient counts are present for statis-
tical analysis. The value of �i was sampled from an inverse
chi-squared distribution on 20◦ of freedom. This introduces
variability in the dispersions across different sites, which
is more realistic than having a constant dispersion for all
sites. Read positions were sampled from wX + sj, where X ∼
Beta(2, 2) and sj is the start location of subinterval j. Reads
were randomly distributed between strands, as strand bi-
modality is less pronounced in histone mark data.

To introduce DB at a binding site, one or two subinter-
vals were randomly chosen from that site. All reads associ-
ated with the chosen subintervals were removed from all li-
braries in one of the groups. This yields a complex DB event
involving a change in the shape of the binding profile (Fig-
ure 1). This was performed for 500 sites in one group, and
repeated for a different set of 500 sites in the other group.
Balanced removal of reads ensures that composition bias is
not introduced, avoiding the need for any normalization.

Non-specific background enrichment was also added to
the simulation. This was performed by partitioning the
genome into 2 kbp bins. For each library, the number of
reads in each bin k was sampled from a NB(�k, �k) distri-
bution. The mean �k was sampled from a uniform distribu-
tion on the interval (10, 50) to mimic the uneven genomic
coverage observed in real data. The dispersion �k was sam-
pled from an inverse chi-squared distribution, as described
above. Note that, for any given bin k, the same sampled val-
ues of �k and �k were used in all libraries to avoid intro-
ducing any DB in the background regions. Finally, reads
were evenly distributed between strands and uniformly dis-
tributed within each bin.

Each method was run on the simulated data to detect pu-
tative DB regions at a nominal FDR of 0.05. Performance
was assessed in terms of the observed FDR and detection
power. The observed FDR was computed as the propor-
tion of detected regions that did not overlap a known DB
site. The detection power was computed as the proportion
of known DB sites that were overlapped by detected regions.
An overlap was only considered if it occurred between a de-
tected region and the DB subinterval of a known DB site.

Sharp DB events. A TF ChIP-seq experiment was simu-
lated with two replicates in two groups. A total of 20 000
binding sites were generated, spaced 10–20 kbp apart on
one chromosome. The number of reads at site i in group
g was sampled from a NB(�ig, �i) distribution. The value
of �i was sampled as previously described. Reads were ran-
domly distributed between strands. Read positions were
sampled from ci − fX or ci + fX for reverse- or forward-
stranded reads, where f is the average fragment length (100
bp) and ci is the location of the binding site. This recapitu-
lates the strand bimodality of TF binding sites.

For non-DB sites, �ig = 30 for all g. To introduce DB,
�i1 = 45 and �i2 = 15 for 500 sites and �i2 = 45 and �i1 =
15 for another 500 sites. This produces a simple DB event
involving a change in the intensity of the entire site. Equal
numbers of DB events were added in both groups to avoid

any composition bias. Reads for background regions were
also added across the genome, as described for the histone
mark simulation.

Each DB detection method was applied to the simulated
data, to define a set of DB regions at a nominal FDR thresh-
old. The observed FDR and detection power was computed
as previously described. This was repeated using thresholds
ranging from 0.01 to 0.2. For PePr, only thresholds up to
0.05 were tested.

Sharp DB events and fixed dispersions. To evaluate the im-
pact of uncertainty in the dispersion estimates, the TF sim-
ulation was repeated without variability in the dispersions
across sites. �i and �k were set to a constant value of 0.05 for
all sites and bins, respectively. For non-DB sites, �ig was set
to 10 for all g. For the DB sites, �i1 = 20 and �i2 = 0 for 500
sites and �i2 = 0 and �i1 = 20 for another 500 sites. This
creates a realistic scenario with many low-intensity bind-
ing events, a small proportion of which are genuinely DB.
Methods were applied for DB detection and the observed
FDR was calculated at a nominal FDR threshold of 0.05.

Peak calling software

Peak calling was performed using MACS v2.1 (http://liulab.
dfci.harvard.edu/MACS) and the HOMER suite v4.7 (http:
//homer.salk.edu/homer). MACS was used without model
building or duplicate removal. The extension length was set
to 100 bp and the genome size was set to the sum of chro-
mosome lengths. When using HOMER, tag directories were
constructed from the libraries using the makeTagDirectory
command, without removal of non-uniquely aligned reads.
The findPeaks command was run on each directory with
the style set to ‘histone’ (for histone mark simulations) or
‘factor’ (for TF simulations), a fragment length of 100 bp,
the genome size set to the sum of chromosome lengths and
no limit on the tags per bp. For both MACS and HOMER,
default significance thresholds were used for peak calling.

Differential binding software

Diffbind. For each peak calling method, peak sets for all
libraries were loaded into DiffBind v1.14.2 (http://www.
bioconductor.org). Peaks were consolidated into a consen-
sus set using a minOverlap of 2, i.e. the peak must be present
in at least two libraries. This is the default setting for mi-
nOverlap, and seems appropriate for our simulations with
two replicates in each group. The setting implies that peaks
present in only one replicate will be considered unreliable
and will be excluded from the consensus set. Reads were
counted into the peak intervals using a fragment length of
100 bp. No removal of duplicates was performed. A contrast
was set up between the two groups, with the minMembers
parameter set to 2. Finally, detection of DB peaks was per-
formed using the generalized linear model (GLM) methods
in edgeR.

DBChIP. DBChIP v1.12.0 (http://www.bioconductor.
org) was applied in conjunction with MACS for TF
simulations. The set of peaks called by MACS in one
replicate of each group was used as the representative set
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for that group. The location of the summit of each peak
was supplied to DBChIP, where the negative log-P-value
computed by MACS was used as the weight of that peak. A
consensus set was obtained by merging the peak sets for the
two groups. Reads were counted into the consensus peaks
for each library, using a fragment length of 100 bp. Each
peak was then tested for DB between groups. DBChIP
was not used with HOMER because HOMER does not
provide summit locations.

PePr. PePr v1.0.8 (https://github.com/shawnzhangyx/
PePr) was run in differential binding mode with the peak
type set to ‘broad’ (for histone mark simulations) or ‘sharp’
(for TF simulations), and the shift size set to half the
fragment size, i.e. 50 bp. Artifacts were not removed as
duplicates were not simulated. Default values were used for
all other parameters. Putative DB sites were identified from
each of the up/down output files as those regions with a
reported FDR below the nominal threshold.

csaw. Analyses used csaw v1.2.1. Reads were extended to
100 bp and counted into windows for each library. The win-
dow size was set to 150 bp for simulated histone mark data
or 10 bp for simulated TF data. Start positions of adja-
cent windows were separated by 50 bp along the genome.
For filtering, reads were also counted into 2 kbp bins, and
the median average abundance of all bins was used as a
global estimate of the background abundance. This estimate
was downscaled for comparison to the window abundances,
based on the difference in the size of the bins and win-
dows. Windows were filtered to retain only those with a two-
fold or greater increase in the average abundance above the
scaled background estimate. This corresponds to genomic
regions where there is substantial enrichment over the non-
specific background.

Counts from the remaining windows were tested for sig-
nificant DB using edgeR v3.10.0. Briefly, an abundance-
dependent trend in the NB dispersions was fitted to all win-
dows, using the estimateDisp function. A GLM was fitted
to the counts for each window using the trended NB disper-
sion. The quasi-likelihood (QL) dispersion was estimated
from the GLM deviance. An abundance-dependent trend
was robustly fitted to the QL dispersions across all windows,
and the QL dispersion estimate for each window was shrunk
to this trend. Finally, a P-value for DB in each window was
computed using the QL F-test.

Windows were clustered into genomic regions using a
nearest-neighbor approach, where adjacent windows no
more than 100 bp apart were placed into the same cluster.
A maximum cluster width of 5 kbp was set to avoid chain-
ing. The P-values for all windows in each cluster were com-
bined using Simes’ method, and the Benjamini–Hochberg
(BH) method was applied on the combined P-values from
all clusters.

Analyses were conducted using R 3.2.0 and Bioconduc-
tor 3.1 for UNIX.

Case study with embryonic stem cells

Libraries were obtained from the NCBI Gene Expres-
sion Omnibus using the accession number GSE53490 (19).

Two replicate libraries were present to examine H3K4me3
marking in each of four biological conditions––treated
wild-type, treated knockout, untreated wild-type and un-
treated knockout. This corresponds to Sequence Read Ac-
cession files SRR1055323 to SRR1055330, which were con-
verted to FASTQ with the fastq-dump utility from the
SRA toolkit. Reads were aligned to the mm10 build of
the mouse genome, using Subread v1.4.6 (20) in paired-
end mode. Unique mapping was turned on, and any
ties were broken with the Hamming distance. BAM files
were sorted and indexed using SAMtools v0.1.19 (http://
samtools.sourceforge.net). DB detection methods were then
applied to identify changes in marking between conditions.

To detect DB events with DiffBind, peaks were called in
each library using MACS or HOMER in histone mode. In
both cases, the same parameters were used as described for
the histone mark simulations, though the fragment length
was set to 200 bp based on the insert sizes of proper read
pairs in each library (see Supplementary Figure S1). A con-
sensus peak set was constructed using DiffBind, as previ-
ously described. Counting was performed for read pairs
through the summarizeOverlaps function, without any re-
moval of duplicates. Parallelization was also turned off to
simplify processing. Contrasts between groups were set up
with minMembers of 2 and the statistical analysis was per-
formed with edgeR.

For csaw, properly paired reads were identified as inward-
facing intra-chromosomal pairs that were no more than 600
bp apart. The interval spanned by each proper pair repre-
sents the fragment from which the reads were sequenced.
The number of fragments overlapping each 150 bp window
was counted for each library. Again, the starts of adjacent
windows were separated by 50 bp. Background-based fil-
tering of windows was performed as described above. Win-
dows in unassigned contigs or the mitochrondrial genome
were also discarded. To remove composition biases, frag-
ments were counted into 10 kbp bins. Normalization factors
were computed from these counts, using the trimmed mean
of M-values (TMM) method without precision weighting.
These factors were used to scale the library sizes when test-
ing for DB windows in edgeR’s QL framework. Clustering
of windows into genomic regions was performed, P-values
were combined for each region and the BH method was
applied as previously described. This analysis was repeated
with 1500 bp windows for a low-resolution analysis, where
the starts of adjacent windows were separated by 500 bp.

RESULTS

Overview of the csaw analysis pipeline

Counting reads into windows. csaw takes a set of sorted and
indexed BAM files as input, where each file contains aligned
reads for one ChIP-seq sample. Either single- or paired-end
sequencing data can be accommodated.

To avoid any assumptions about the shape or scope of the
DB events, csaw implements a window-based approach to
quantify read coverage across the genome. The number of
DNA fragments overlapping a genomic window is counted.
The window is then shifted by a constant spacing interval
and counting is repeated. This is performed for each library
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in the dataset such that a count is obtained for each win-
dow in each library. For single-end data, fragments are im-
puted by directionally extending each read to the average
fragment length (21). The average fragment length can be
estimated using cross-correlation plots (22) or can be man-
ually specified. Read extension means that the count for a
window is not limited to those reads that directly overlap
the window. Even if a read does not overlap the window,
its extended version may do so and be counted, provided
that the read is adjacent to and facing that window. In this
manner, the directionalities of the surrounding reads are im-
plicitly incorporated into the final count for each window.
For paired-end data, each fragment is represented by the in-
terval spanned by two reads in a proper pair. This refers to
inward-facing reads that are on the same chromosome and
separated by a distance less than some maximum threshold,
e.g. 600 bp.

The window width is a critical parameter that controls
the compromise between spatial resolution and count size.
Small windows should be used for sharp enrichment where
spatial resolution is critical, e.g. for TFs and histone marks
with punctate profiles. For diffuse marks, wider windows
will increase the count size and improve DB detection. The
choice of window size can be guided by treating the win-
dow as the region of contact between the target protein and
the genome. For TFs, the contact region may be no more
than 10–50 bp. For histones, the width should be at least the
length of DNA protected by a nucleosome (about 150 bp).
Windows can be as large as several megabases in extreme
cases, e.g. when analyzing ChIP-seq data for lamin–DNA
interactions. If the choice of window size is not obvious,
csaw can provide some assistance. For sharp events, csaw
can aggregate the coverage profile across all local maxima
in the genome. The window size can then be defined from
the width of the peak in the profile. For more diffuse bind-
ing, there may not be a single optimal value for the window
size. Instead, analyses can be repeated with multiple sizes
and consolidated later, to provide comprehensive detection
at a range of resolutions.

Note that small window sizes may still be useful for dif-
fuse enrichment. Figure 1 shows a schematic of a diffuse
binding event where one subinterval is unbound in the sec-
ond treatment group. For such complex DB events, small
windows can be tiled across the region such that changes
in binding within any subinterval of that region will be de-
tected in the corresponding window.

Normalization of library-specific biases. csaw automati-
cally adjusts for variable sequencing depth between li-
braries. In addition, it provides a range of scaling and non-
linear normalization techniques to adjust for other biases.
To remove composition biases between libraries, reads are
counted into 10 kbp bins over the genome for each library.
The TMM method (23) is applied to the counts to obtain a
set of normalization factors. Alternatively, TMM normal-
ization can be performed directly on the counts for high-
abundance windows, i.e. putative enriched regions. This
aims to eliminate biases introduced by variable IP efficien-
cies between libraries. The best choice of normalization
strategy depends on the biological problem. TMM normal-
ization with binned counts is more appropriate when global

changes in binding are expected. Otherwise, TMM on high-
abundance windows may be preferable.

TMM is a scaling normalization method that changes
the effective libraries sizes linearly for all genomic regions.
A non-linear loess-based normalization method is also im-
plemented to remove trended differences in window counts
with respect to abundance, analogous to cyclic loess nor-
malization for microarrays (24,25). More details on the dif-
ferent normalization options are provided in the Supple-
mentary Materials.

Assessing DB windows. csaw uses the quasi-likelihood
functionality (9,18) of the edgeR package (10) to assess DB
between treatment conditions for each window. The QL
approach models small integer counts appropriately using
negative binomial distributions. This provides accurate, if
slightly conservative, type I error rate control while bor-
rowing information between windows to improve statistical
power. In particular, it leverages the empirical Bayes func-
tionality of the limma package (26) to model biological vari-
ability robustly in the presence of a limited number of repli-
cates. The edgeR package also provides support for arbi-
trarily complex experimental designs by fitting generalized
linear models (8).

Windows with zero or very low counts across all libraries
are filtered from the analysis prior to the DB analysis. Their
removal reduces computational work, improves dispersion
estimation and alleviates the severity of subsequent multi-
ple testing adjustments. The csaw User’s Guide discusses a
number of different strategies to determine which windows
should be filtered. One simple approach is to filter on av-
erage abundance as computed by the aveLogCPM function
of the edgeR package. In all cases, filtering is done indepen-
dently of DB testing to avoid loss of type I error control.

Aggregating windows into DB regions. From a scientific
perspective, it is more meaningful to interpret DB in terms
of genomic regions rather than in terms of individual win-
dows. csaw uses a nearest-neighbor clustering method to ag-
gregate adjacent windows into regions. Briefly, a window is
placed into a cluster if the gap between the window and
the boundaries of the cluster is less than some tolerance.
This is repeated until there are no more adjacent windows
or the cluster reaches a pre-set maximum allowed width (to
protect against excessively large clusters due to chaining ef-
fects). The value of the tolerance represents the maximum
distance at which two windows are considered to represent
the same underlying binding event.

Correct FDR control across regions (clusters of win-
dows) requires special care (12). For each region, the P-
values of the constituent windows are combined into a sin-
gle value using Simes’ method. This combined P-value rep-
resents the evidence against the global null hypothesis for
each region, i.e., that none of the windows in the region are
DB. The BH algorithm is then applied to the combined P-
values to control the FDR for detected regions. The same
strategy can be used to combine DB results over regions
of interest like promoters or gene bodies, for comparison
to differential expression analyses. Similarly, results can be
consolidated from analyses using different window sizes, for
DB detection at a range of spatial resolutions. The window
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with the most significant DB within each cluster can also be
easily identified for purposes of validation or motif discov-
ery.

Implementation details. csaw is implemented as an R
package. The code is primarily written in R, with C++ ex-
tensions for greater speed. csaw provides a modular user in-
terface that facilitates a flexible analysis pipeline. It makes
extensive use of core Bioconductor packages such as Ge-
nomicRanges and Rsamtools (16) to handle genomic data,
as well as edgeR and limma for statistical methods. It comes
with extensive documentation including a 65 page user’s
guide. A typical DB analysis with csaw can be fully exe-
cuted within the R/Bioconductor framework without the
need for any additional software, which simplifies installa-
tion and improves ease of use.

Performance for complex DB events

One major aim of the csaw package is to detect complex
changes in diffuse binding events between treatment condi-
tions. Such complex DB events might be observed in histone
mark datasets. We designed a simulation involving these
complex changes, for use in evaluating the performance of
different DB detection methods. Specifically, data was simu-
lated for two groups of two replicates where the shape of the
binding profile at a DB site changed between groups (Figure
1). (See the ‘Materials and Methods’ section ‘Complex DB
events’ for details of the simulation.) We compared the per-
formance of csaw to that of DiffBind in conjunction with
two different peak callers. DBChIP was not used here as it
is explicitly designed for TF ChIP-seq data. Of the window-
based methods, we have previously tested the performance
of USeq and diffReps (12). Here, we focus on the newer PePr
method.

For all methods, performance was assessed based on the
observed FDR and detection power at a nominal FDR
threshold of 0.05. The csaw analysis was able to control the
FDR below the nominal threshold (Figure 2A). This be-
havior was robust to changes in the window size, which was
initially set at 150 bp. Repeating the analyses with window
sizes of 50 and 250 bp yielded an observed FDR of 0.037
and 0.038, respectively, and a detection power of 0.66 and
0.73, respectively. In contrast, the DiffBind-based analyses
were liberal, especially so for the DiffBind-HOMER combi-
nation. Similar liberalness was observed with PePr. Despite
being the only conservative method, csaw was still able to
provide a substantial increase in detection power over all
other methods (Figure 2B).

Performance for sharp DB events

Further simulations were conducted to evaluate the perfor-
mance of each method on sharp peaks from TF binding ex-
periments. Data was generated for two groups of two repli-
cates, where DB was present between groups at several sites.
This involves ‘simple’ DB that occurs across the entire site,
i.e. a change in intensity without a change in the binding
profile. (See the ‘Materials and Methods’ section ‘Sharp DB
events’ for details of the simulation.) csaw was compared to
DiffBind-MACS, DiffBind-HOMER and PePr as before. It

was also compared to DBChIP (11), which is specifically
designed to detect sharp peaks. The performance of each
method at nominal FDR thresholds ranging from 0.01 to
0.2 were tested. For PePr, only thresholds up to 0.05 were
tested. This is because sites with higher FDR values are not
reported, and no options are available to directly specify the
nominal FDR.

csaw and DiffBind provided similar detection power at
any given value for the observed FDR (Figure 3), whereas
slightly less power was observed for DBChIP and PePr.
However, only csaw was able to control the FDR below
the nominal threshold. For example, at a nominal thresh-
old of 0.05, csaw was the only method to yield an observed
FDR that is lower than this threshold (see shading in Fig-
ure 3). All other methods are liberal as they yield observed
FDRs above this threshold. The same effect can be observed
at other thresholds, where the corresponding point on the
curve for csaw lies to the left of each threshold while the
points for the other methods lie on the right. In fact, at the
highest threshold of 0.2 (i.e. rightmost point on each curve
except for PePr), only csaw has an observed FDR within
the range of the plot. This highlights the liberalness of the
peak-based methods in this simulation.

DiffBind and DBChIP use edgeR to perform likelihood
ratio tests (LRTs) or exact tests to detect DB. In compar-
ison, the csaw package uses the more conservative quasi-
likelihood F-test. Unlike the LRT or exact test, the F-test
accounts for the uncertainty of estimation of the NB dis-
persion parameters. We wondered to what extent the lib-
eralness of DiffBind and DBChIP in the above simulation
is due to the choice of statistical test. To answer this ques-
tion, we performed another TF simulation where the NB
dispersion parameters were fixed for all sites. (See the ‘Ma-
terials and Methods’ section ‘Sharp DB events with fixed
dispersion’ for details of the simulation.) Analyses with each
method were performed as described for the previous TF
simulation, though estimation of tagwise dispersions was
turned off in DiffBind. Both DiffBind and DBChIP will
use a global common dispersion parameter across all peaks,
which should be precisely estimated with negligible error.
This should negate any advantage of the F-test over the
LRT or exact test. However, even in this favorable scenario,
FDR control was still lost by both DiffBind or DBChIP
(Figure 4).

Differential H3K4me3 marking in embryonic stem cells

The utility of detecting complex DB events can be high-
lighted with some real ChIP-seq data. The chosen study
investigates H3K4me3 marking in mouse embryonic stem
cells (19). The study contains four groups involving wild-
type and Cfp1 knock-out mice, where marking in each geno-
type has been assayed before and after treatment with dox-
orubicin. Each group also contains two biological repli-
cates.

The aim of the analysis is to identify changes in mark-
ing upon doxorubicin treatment in each genotype. This was
done by applying csaw, DiffBind-HOMER and DiffBind-
MACS. For csaw, normalization factor estimates are visu-
alized with MA plots in Supplementary Figure S2, while
plots of the NB and QL dispersion estimates are shown

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/44/5/e45/2464481 by guest on 24 April 2024



PAGE 7 OF 10 Nucleic Acids Research, 2016, Vol. 44, No. 5 e45

Figure 2. Performance of csaw and peak-based methods for complex DB events in terms of the (A) observed FDR and (B) detection power. The dotted
line shows the nominal FDR threshold, which was set to 0.05 in all analyses. Bar heights and error bars represent the means and standard errors over 10
simulated datasets, respectively.

Figure 3. Performance of the different methods when detecting DB for
sharp TF peaks. Each curve represents the change in the observed FDR
and detection power as the nominal FDR threshold is varied for each
method. From left to right, the points on each curve correspond to thresh-
olds of 0.01, 0.05, 0.1, 0.15 and 0.2. Only thresholds of 0.01 and 0.05 are
shown for PePr. Shaded points mark the performance of each method at
a threshold of 0.05 (dotted line). All values represent means from 10 sim-
ulated datasets.

in Supplementary Figure S3. DBChIP was not used here,
as it is limited to analyses of TF ChIP-seq data. PePr was
not used for simplicity, given that its window-based analy-

Figure 4. Observed FDR of csaw and the peak-based methods for simu-
lated TF data with constant dispersion. Bar heights represent the mean
of 10 simulated datasets, while error bars represent standard errors. The
nominal FDR is set to 0.05 and is shown as the dotted line.

sis is redundant with (and, in the simulations, outperformed
by) csaw. For all tested methods, DB comparisons were per-
formed between the treated and untreated groups for each
genotype. Putative DB regions were detected at a nominal
FDR of 0.05. Coordinates of detected regions were com-
pared between csaw (using 150 bp windows) and DiffBind
(using HOMER or MACS) to identify DB regions unique
to each method.
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csaw detected a number of complex DB events in the
H3K4me3 dataset. In Figure 5A, marking spreads through-
out the Polr2b gene upon doxorubicin treatment. This is
potentially interesting as H3K4me3 is a mark of transcrip-
tional activation. Increased marking may correspond to an
increase in expression for this gene. However, using Diff-
Bind with MACS or HOMER fails to detect this event.
This is because the entire enriched region is defined as a
peak, such that the relevant DB subinterval cannot be re-
solved. Similarly, in Figure 5B, treatment results in an in-
crease in marking in the final exon of the Myadm gene. This
event is not detected by DiffBind, as peak calling of the low-
abundance DB site is confounded by the neighboring high-
abundance sites.

The modularity of csaw means that the GLM machinery
in edgeR is fully accessible. This allows the specification of
more complex comparisons. For example, users can spec-
ify an ANOVA-like contrast to identify DB regions with
any changes in binding across all groups. One such region is
shown in Supplementary Figure S4a, where marking drops
upon both treatment and upon knocking out Cfp1. Alterna-
tively, users might be interested in regions where the effect of
treatment in the wild-type genotype differs from that in the
knockout. An example is provided in Supplementary Fig-
ure S4b, where marking increases slightly upon treatment
in the wild-type but decreases considerably upon treatment
in the knockout. Most other pipelines cannot perform these
contrasts as they are limited to simple comparisons between
two groups.

DiffBind with MACS or HOMER also detects a number
of putative DB features that are not found by csaw. Many
of these are diffuse regions with weak but consistent DB
(Supplementary Figure S5). Peak-based methods provide
greater detection power for such regions, as large peaks can
collect more read counts than small windows (12). Each
subinterval of the region has the same DB status, so no ben-
efit is gained from considering each subinterval separately
with small windows. That said, if such events are of interest,
they can be identified by simply increasing the window size
in csaw. This sacrifices spatial resolution for count size, de-
creasing power for sharp DB in favor of diffuse DB. Indeed,
both examples in Supplementary Figure S5 are detected by
csaw when a window size of 1.5 kbp is used. Comprehensive
DB detection at a range of resolutions can be achieved by
repeating the analysis with different window sizes.

DISCUSSION

In the simulations, csaw was the only method that was able
to control the FDR correctly at or below the nominal level
for detected DB regions. This is partially due to csaw’s use
of the QL F-test, which accounts for uncertainty in the dis-
persion estimates (9). Indeed, csaw has a modular design
that allows the latest functionality in edgeR (or other pack-
ages) to be easily implemented in a DB analysis pipeline. In
contrast, DiffBind and DBChIP provide wrapper functions
around edgeR that limit access to the underlying statistical
methods.

However, the use of different tests does not fully explain
the liberalness of the peak-based methods. Loss of con-
trol is still observed in a special simulation where the tests

used by DiffBind and DBChIP should have optimal per-
formance. This is due to the lack of independence between
peak calling and DB detection (12). DBChIP selects peaks
that are present in either group. This is likely to enrich for
regions with spurious DB, as the sites that minimally sat-
isfy this criterion will necessarily be present in one group
and not the other. The situation is more subtle with Diff-
Bind, which selects peaks that are present in at least two
libraries by default. Sites that minimally satisfy this crite-
rion are those with high-abundance peaks in exactly two li-
braries. Again, this enriches for sites with spurious DB, i.e.
where both peaks are in the same group. Note that the dis-
persion estimates will also be inflated by the presence of sites
with the two peaks in different groups, but––in this simula-
tion, at least––any resulting conservativeness is more than
offset by the liberalness from spurious DB. csaw avoids all
of these issues as no peak calling is performed.

Loss of FDR control with PePr is demonstrative of
the difference between window-level and region-level error
rates. In PePr, significant windows are identified before ag-
gregation into regions for reporting (15). However, control-
ling the window-level error is not equivalent to controlling
its region-level counterpart (12). This results in liberalness
when results are interpreted in terms of regions. In csaw,
Simes’ method is used in conjunction with the BH method
to guarantee control of the region-level FDR.

csaw was more powerful than other methods at detect-
ing complex DB events, especially those involving changes
in the width of a binding event. This was shown with sim-
ulated data and also demonstrated in the H3K4me3 case
study. The relatively poor performance of peak-based meth-
ods can be attributed to the fact that each binding site is de-
fined as a single peak by MACS or HOMER. If reads are
counted from the entire site, strong changes in one subinter-
val of the site are likely to be masked by the lack of DB in
the rest of the site. In contrast, csaw is able to tile small win-
dows across the binding site. Each window corresponds a
different subinterval of the binding site, such that the mag-
nitude of any changes in part of the site can be faithfully
captured by a window. This improves detection power for
these complex events.

We note that the latest MACS software is capable of iden-
tifying subpeaks within a single peak interval. This might be
expected to improve spatial resolution for analysis of com-
plex DB events. However, the simulated data in Figure 1
shows no obvious subpeaks within the coverage profile for
each condition. Similarly, no subpeaks are apparent across
the DB subinterval in Figure 5A and Supplementary Figure
S4a. It is also challenging to consolidate multiple adjacent
subpeaks for each peak into an unambiguous consensus set
across all libraries. Indeed, just like region-level FDR con-
trol is preferred to window-level control, one must decide
whether the FDR should be controlled across all subpeaks
or across all peaks. This is not straightforward if each peak
interval is aggressively partitioned into many subpeaks.

csaw did not exhibit any power advantage over DiffBind
for the TF simulation. This is because the sharp peaks were
easily identified by the peak calling software. Note that we
used the updated version of MACS (v2.1), which reports
more precise peak boundaries than its predecessor (v1.4).
In this case, windowing did not provide any useful gain in
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Figure 5. Examples of complex DB events in the H3K4me3 dataset, detected by csaw but not DiffBind at a FDR threshold of 0.05. Each track represents
the coverage profile for a single representative library of a group. The profile itself is defined as the number of fragments overlapping each base, transformed
into a count-per-million value based on library size. Any genes in the interval are also shown, based on NCBI mouse build 38 annotation. (A) DB before
and after treatment for wild-type (WT) mice, detected with a FDR of 6.7 × 10−9. (B) DB before and after treatment for knockout (KO) mice, detected
with a FDR of 1.1 × 10−5.

spatial resolution. Nevertheless, csaw still returned the same
performance curve as the best peak-based methods.

The modularity of the csaw package means that the full
GLM machinery in edgeR is accessible to the user. This al-
lows csaw to accommodate other experimental designs and
DB contrasts. For example, csaw can be used to perform
paired analyses or can test for an interaction effect, as illus-
trated in Supplementary Figure S4b. csaw can also handle
other data types beyond complex DB in H3K4me3 mark-
ing. We have previously shown that the same window-based
method can detect simple DB events in TF, H3K4me3 and
H3ac datasets (12). A recent study has also successfully used
csaw to analyze differential H3K27me3 marking (27,28).
Further interrogation of this dataset reveals that complex
DB is present for broad H3K27me3 marks, and that these
events can be detected with csaw (Supplementary Figure
S6).

While csaw does not require negative control libraries
such as input or IgG controls, they can be accommodated
into the DB analysis if deemed necessary. A simple ap-
proach is to use the controls to refine the filtering step,
whereby a window is only retained if the average abundance
across the ChIP libraries is substantially greater than that
across the controls. Alternatively, csaw can be used to detect
DB between ChIP samples and controls to identify absolute
binding sites. More generally, the GLM framework means
that csaw can incorporate condition-specific controls into a
regular DB analysis in several ways. One approach is to in-
clude the controls in the linear model so that the log-fold
change between conditions for the ChIP samples is com-
pared to that of the controls. Another approach is to nor-
malize the ChIP samples to condition-specific controls and
to pass the adjustments to csaw as offsets for GLM fitting
(5,29).

In summary, the csaw package provides a window-based
approach for de novo detection of DB regions from ChIP-
seq data. It does so in a statistically rigorous manner, by
providing well-considered methods to normalize library-
specific biases, to model biological variability and to con-
trol the appropriate FDR. The modularity of the package
means that its constituent methods can be applied in other
pipelines––for example, Manna et al. use csaw’s normal-
ization strategy in conjunction with promoter-based count-
ing (30). In general, csaw could be used for a window-
based analysis of any sequencing data where differences
in genomic coverage are of interest, e.g. differential chro-
matin accessibility in DNase-seq, differential methylation
in MeDIP-seq or discovery of unannotated differentially ex-
pressed transcripts in RNA-seq (31).

AVAILABILITY

csaw is freely available under the GPL-3 license for Win-
dows, MacOS and UNIX as part of the Bioconduc-
tor project (http://www.bioconductor.org) (17,32). Infor-
mation about the lastest official release of the software
can be viewed at http://www.bioconductor.org/packages/
release/bioc/html/csaw.html.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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